Displaying publications 81 - 100 of 136 in total

Abstract:
Sort:
  1. Luo Z, Liu P, Qi H, Chen X, Zhang J, Sun C, et al.
    Plant Dis, 2023 Nov 30.
    PMID: 38035784 DOI: 10.1094/PDIS-03-23-0580-PDN
    Styphnolobium japonicum (L.) Schott (family Fabaceae Juss.) also called pagoda tree, is widely planted in northern China in landscape plantings, for erosion control and forestry. In recent years, symptoms of branch dieback were observed on S. japonicum in the southern part of Xinjiang province, China. From 2019 to 2022, in total ca. 1000 ha area was surveyed in Korla (41.68°N, 86.06°E), Bohu (41.95°N, 86.53°E) and Alaer (41.15°N, 80.29°E). Typical symptoms were observed in 70% of the surveyed branches. To identify the cause, we collected 50 symptomatic branches. Symptoms were initially observed on green current-year twigs, which turned grayish white in color. In the later stages of disease development, a large number of nacked black conidia formed under epidermis of perennial branches, causing visible black protrusions (pycnidia) on branch surface. The disease occurred throughout the entire growing season of S. japonicum. Symptoms also occurred on the inflorescence, fruit, and twigs. In some cases, infection resulted in tree mortality. Isolations were made from the margin between healthy and diseased tissues. Small pieces were excised, surface disinfested (75% ethanol 30 s, 1% NaClO solution 5 mins), cut into pieces (5 to 10 mm2), and incubated on PDA medium at 28℃ for 3 days. A total of 16 isolates (GH01-GH16) with similar colony morphology were obtained. The colonies were initially white, gradually turning to olive-green on the surface and black on the underside after 7 days. Microscopically, the conidia were aseptate, 1-septate, two-septate, and muriform, 2.6-4.5 × 2.9-27.6 μm (n=50). Pycnidia ranged in size from 120.2 to 135.5 × 112.4 to 118.6 µm (n=20). Those morphological characters matched the descriptions of Neoscytalidium dimidiatum (previously N. novaehollandiae) (Alizadeh et al. 2022; Pavlic et al. 2008). For molecular identification, genomic DNA of GH01-GH16 were extracted from fresh mycelia. The internal transcribed spacer (ITS), large subunit ribosomal RNA gene (LSU), and translation elongation factor 1-alpha (EF1-α) gene were amplified using the primer sets ITS1/ITS4 (White 1990), LRoR/LR5 (Vilgalys and Hester 1990) and EF1-728F/EF1-986R (Carbone and Kohn 1999). The sequences were deposited in GenBank (accession No. OP379832, OQ096643-OQ096657 for ITS, OP389048, OQ127403-OQ127417 for LSU, and OQ136617, OQ586044-OQ586058 for EF1-α). The ITS sequence had 100% identity (505/505 bp) to MT362600. Similarly, the LSU and EF1-α sequences were found to be identical to MW883823 (100%, 821/821 bp) and KX464763(99%, 256/258 bp), respectively. Pathogenicity was tested on one-year-old healthy S. japonicum seedlings. Spores of representative isolate GH01 were produced on PDA by incubating for 7-days at 28℃. Conidia were washed with sterile water. Five trees were inoculated with 1 × 106 conidia/ml conidial suspensions and five trees were sprayed with sterile water. All trees were covered with plastic bags for 24 h and kept at 25°C in a greenhouse. Signs and symptoms were similar to those observed in field collections one month after inoculation, while no symptoms occurred on the controls. The original fungus was successfully reisolated from the inoculated trees and was identified as N. dimidiatum following the methods described above. N. dimidiatum has been reported in many Asian country such as Malaysia, India, Turkey, and Iran(Akgül et al. 2019; Alizadeh et al. 2022; Khoo et al. 2023; Salunkhe et al. 2023). To our knowledge, this is the first report of N. dimidiatum associated with branch dieback of S. japonicum in China. Our findings have expanded the host range of N. dimidiatum in China and provides a theoretical basis for the diagnosis and treatment of the disease.
  2. Chang HX, Huang CC, Lu PK
    Plant Dis, 2023 Nov 21.
    PMID: 37990523 DOI: 10.1094/PDIS-10-23-2127-PDN
    From September 2020 to January 2021, an unknown disease of winged bean (Psophocarpus tetragonolobus) was reported by local growers in the Toucheng Town, Yilan County (N24.91, E121.85). The disease occurs in all age of winged bean, and the occurrence tended to be higher in humid environment, such as branches in lower canopy or branches in high density. The disease symptoms, which also appeared to be the sign of the pathogen, were spherical pustules in yellow to orange color on the stems, leaves, and pods of winged bean. Severely infected plants also exhibited growth reduction, malformation, and curling of the leaves and pods. According to the disease literature of winged bean, this unknown disease was likely to be the false rust caused by a chytrid pathogen, Synchytrium psophocarpi (UK, CAB International. 1993); and the uredinia-liked pustules could be the sori, which contain numerous ovoid to globose sporangia inside. In order to characterize the pathogen identity, the sori were manually ruptured to assess the size of individual sporangium, which had an average of 26.71 ± 4.25 μm x 26.61 ± 4.60 μm (n=42), similar to the size reported in literature (Drinkall and Price. 1979). To confirm the molecular identity, the full genomic sequences from the small subunit (SSU) to the internal transcribed spacer-1 (ITS-1), 5.8S unit, and ITS-2 were amplified using the primer sets NS3 and ITS4. The 2,263 bp amplicon was cloned and sequenced to reveal the identity (Smith et al. 2014). The BLASTN results matched the SSU of our isolate (MW649126.1) to the Synchytrium minutum (HQ324138.1) with 96% similarity (1,075 out of 1,121 bp in length), Synchytrium decipiens isolate DAOM_87618 (KF160868.1) with 92% similarity (1,215 out of 1,326 bp in length) and S. decipiens isolate AFTOL-ID 634 (DQ536475.1) with 92% similarity (1210 out of 1316 bp in length). Phylogenetic analysis using the SSU sequence revealed this unknown pathogen was the grouped within the clade of Synchytrium genus with 100% bootstrapping confidence (Smith et al. 2014). Accordingly, the pathogen was confirmed to be a Synchytrium chytrid fungus. To complete the Koch's postulates, the sori were collected from infected tissue. After vortexing washing in 1% bleach for surface sterilization, the sori were gently crashed by a plastic tube pestle to harvest sporangia. The sporangia were sprayed onto healthy winged beans cultivated in pots, and the inoculated plants were kept in a moisture bag in 25 °C. While leaf curling and malformation could be observed about 14 days post inoculation, the yellow to orange sori could be observed around 30 to 40 days post inoculation on the whole plants cultivated in pots. The sori were collected to confirm the sporangia and the sequences were identical to the original pathogen. Collectively, this study not only presents the first report for the false rust of winged bean in Taiwan, but also documents the first reference sequence of S. psophocarpi that will be useful for future molecular diagnosis. Since S. psophocarpi has been only reported in tropic regions including Indonesia, Malay Peninsula, Malaysia, Papua New Guinea, and Philippines, this report provides the first observation of S. psophocarpi moving in the subtropic region.
  3. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Mahmodi F
    Plant Dis, 2012 Aug;96(8):1226.
    PMID: 30727066 DOI: 10.1094/PDIS-03-12-0223-PDN
    In June 2011, tomatoes (Solanum lycopersicum) in major growing areas of the Cameron Highlands and the Johor state in Malaysia were affected by a leaf spot disease. Disease incidence exceeded 80% in some severely infected regions. Symptoms on 50 observed plants initially appeared on leaves as small, brownish black specks, which later became grayish brown, angular lesions surrounded by a yellow border. As the lesions matured, the affected leaves dried up and became brittle and later developed cracks in the center of the lesions. A survey was performed in these growing areas and 27 isolates of the pathogen were isolated from the tomato leaves on potato carrot agar (PCA). The isolates were purified by the single spore technique and were transferred onto PCA and V8 agar media for conidiophore and conidia production under alternating light (8 hours per day) and darkness (16 hours per day) (4). Colonies on PCA and V8 agar exhibited grey mycelium and numerous conidia were formed at the terminal end of conidiophores. The conidiophores were up to 240 μm long. Conidia were oblong with 2 to 11 transverse and 1 to 6 longitudinal septa and were 24 to 69.6 μm long × 9.6 to 14.4 μm wide. The pathogen was identified as Stemphylium solani on the basis of morphological criteria (2). In addition, DNA was extracted and the internal transcribed spacer region (ITS) was amplified by universal primers ITS5 and ITS4 (1). The PCR product was purified by the commercial PCR purification kit and the purified PCR product sequenced. The resulting sequences were 100% identical to published S. solani sequences (GenBank Accestion Nos. AF203451 and HQ840713). The amplified ITS region was deposited with NCBI GenBank under Accession No. JQ657726. A representative isolate of the pathogen was inoculated on detached 45-day-old tomato leaves of Malaysian cultivar 152177-A for pathogenicity testing. One wounded and two nonwounded leaflets per leaf were used in this experiment. The leaves were wounded by applying pressure to leaf blades with the serrated edge of a forceps. A 20-μl drop of conidial suspension containing 105 conidia/ml was used to inoculate these leaves (3). The inoculated leaves were placed on moist filter paper in petri dishes and incubated for 48 h at 25°C. Control leaves were inoculated with sterilized distilled water. After 7 days, typical symptoms for S. solani similar to those observed in the farmers' fields developed on both wounded and nonwounded inoculated leaves, but not on noninoculated controls, and S. solani was consistently reisolated. To our knowledge, this is the first report of S. solani causing gray leaf spot of tomato in Malaysia. References: (1) M. P. S. Camara et al. Mycologia 94:660, 2002. (2) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiversity Series 6:775, 2007.
  4. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Mahmodi F
    Plant Dis, 2012 Aug;96(8):1226.
    PMID: 30727083 DOI: 10.1094/PDIS-03-12-0237-PDN
    A leaf spot on eggplant (Solanum melongena) was observed in major eggplant growing regions in Malaysia, including the Cameron Highlands and Johor State, during 2011. Disease incidence averaged approximately 30% in severely infected regions in about 150 ha of eggplant fields and greenhouses examined. Early symptoms consisted of small, circular, brown, necrotic spots uniformly distributed on leaves. The spots gradually enlarged and developed concentric rings. Eventually, the spots coalesced and caused extensive leaf senescence. A fungus was recovered consistently by plating surface-sterilized (1% NaOCl) sections of symptomatic leaf tissue onto potato dextrose agar (PDA). For conidial production, the fungus was grown on potato carrot agar (PCA) and V8 agar media under a 16-h/8-h dark/light photoperiod at 25°C (4). Fungal colonies were a dark olive color with loose, cottony mycelium. Simple conidiophores were ≤120 μm long and produced numerous conidia in long chains. Conidia averaged 20.0 × 7.5 μm and contained two to five transverse septa and the occasional longitudinal septum. Twelve isolates of the fungus were identified as Alternaria tenuissima on the basis of morphological characterization (4). Confirmation of the species identification was obtained by molecular characterization of the internal transcribed spacer (ITS) region of rDNA amplified from DNA extracted from a representative isolate using universal primers ITS4 and ITS5 (2). The 558 bp DNA band amplified was sent for direct sequencing. The sequence (GenBank Accession No. JQ736021) was subjected to BLAST analysis (1) and was 99% identical to published ITS rDNA sequences of isolates of A. tenuissima (GenBank Accession Nos. DQ323692 and AY154712). Pathogenicity tests were performed by inoculating four detached leaves from 45-day-old plants of the eggplant cv. 125066x with 20 μl drops (three drops/leaf) of a conidial suspension containing 105 conidia/ml in sterile distilled water. Four control leaves were inoculated with sterile water. Leaves inoculated with the fungus and those treated with sterile water were incubated in chambers at 25°C and 95% RH with a 12-h photoperiod/day (2). Leaf spot symptoms typical of those caused by A. tenuissima developed on leaves inoculated with the fungus 7 days after inoculation, and the fungus was consistently reisolated from these leaves. The control leaves remained asymptomatic and the pathogen was not reisolated from the leaves. The pathogenicity test was repeated with similar results. To our knowledge, this is the first report of A. tenuissima causing a leaf spot on eggplant in Malaysia. A. tenuissima has been reported to cause leaf spot and fruit rot on eggplant in India (3). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (3) P. Raja et al. New Disease Rep. 12:31, 2005. (4) E. G. Simmons. Page 1 in: Alternaria Biology, Plant Diseases and Metabolites. J. Chelchowski and A. Visconti, eds. Elsevier, Amsterdam, 1992.
  5. Mejías Herrera R, Hernández Y, Magdama F, Mostert D, Bothma S, Paredes Salgado EM, et al.
    Plant Dis, 2023 Jun 20.
    PMID: 37340554 DOI: 10.1094/PDIS-04-23-0781-PDN
    Fusarium wilt of banana (Musa spp.), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), is a major constraint to banana production worldwide (Dita et al., 2018). A strain of Foc that affects Cavendish (AAA) bananas in the tropics, called Foc tropical race 4 (TR4; VCG 01213), is of particular concern. Foc TR4 was first detected in Malaysia and Indonesia around 1990 but was restricted to Southeast Asia and northern Australia until 2012. The fungus has since been reported from Africa, the Indian subcontinent, and the Middle East (Viljoen et al., 2020). Foc TR4 was detected in Colombia in 2019 and in Perú in 2021 (Reyes-Herrera et al., 2020). The incursions into Latin America and the Caribbean (LAC) triggered global concerns, as 75% of international export bananas are produced in the region. Banana production in Venezuela, however, is primarily intended for domestic consumption (Aular and Casares, 2011). In 2021 the country produced 533,190 metric tons of banana on an area of 35,896 ha, with an approximate yield of 14,853 kg/ha (FAOSTAT, 2023). In July 2022, severe leaf-yellowing, and wilting, along with internal vascular discoloration of the pseudostem, were noted in Cavendish banana plants cultivar 'Valery' in the states of Aragua (10°11'8″N; 67°34'51″W), Carabobo (10º14'24″N; 67º48'51″W), and Cojedes (9°37'44″N; 68°55'4″W). Necrotic strands from the pseudostems of diseased plants were collected for identification of the causal agent using DNA-based techniques, vegetative compatibility group (VCG) analysis and pathogenicity testing. The samples were first surface disinfected and plated onto potato dextrose agar medium. Single-spored isolates were identified as F. oxysporum based on cultural and morphological characteristics, including white colonies with purple centres, infrequent macroconidia, abundant microconidia on short monophialides, and terminal or intercalary chlamydospores (Leslie and Summerell, 2006). Foc TR4 was identified from five isolates by endpoint and quantitative-PCR using four different primer sets (Li et al. 2013; Dita et al. 2010; Aguayo et al. 2017; Matthews et al. 2020). The same isolates were identified as VCG 01213 by successfully pairing nitrate non-utilizing (nit-1) mutants of the unknown strains with Nit-M testers of Foc TR4 available at Stellenbosch University (Leslie and Summerell, 2006). For pathogenicity testing, 3-month-old Cavendish banana plants cultivar 'Williams' were inoculated with isolates from Venezuela grown on sterile millet seed (Viljoen et al., 2017). Plants developed typical Fusarium wilt symptoms 60 days after inoculation, including yellowing of leaves that progressed from the older to the younger leaves, wilting, and internal discoloration of the pseudostem. Koch's postulates were fulfilled by reisolating and identifying Foc TR4 from the plants by qPCR (Matthews et al., 2020). These results provide scientific proof of the presence of Foc TR4 in Venezuela. The Venezuelan Plant Protection Organization (INSAI) has declared Foc TR4 as a newly introduced pest (January 19, 2023), and infested banana fields were placed under quarantine. Comprehensive surveys are now conducted in all production areas in Venezuela to assess the presence and impact of Foc TR4, and information campaigns were started to make farmers aware of biosecurity protocols. Collaborative initiatives and coordinated actions among all stakeholders are needed to prevent the spread of Foc TR4 to other countries in Latin America, and to develop Foc TR4-resistant bananas (Figueiredo et al. 2023).
  6. Keith LM, Matsumoto TK
    Plant Dis, 2013 Jan;97(1):146.
    PMID: 30722309 DOI: 10.1094/PDIS-07-12-0702-PDN
    Mangosteen (Garcinia mangostana L.) is a tropical evergreen tree that produces one of the most prized tropical fruits, commonly known as the "Queen of the Fruits.″ Mangosteen has the potential to occupy a rapidly expanding niche market in Hawaii. In October 2009, a disease was observed that produced brown leaf spots and blotches surrounded by bright yellow halos at a mangosteen orchard located in Hakalau, Hawaii (19° 53' 49″ N, 155° 7' 35″ W). Recently transplanted 10+ year old trees were 95 to 100% infected. Pieces of infected leaves and stems were surface-sterilized, plated on potato dextrose agar (PDA), and incubated at 24°C ± 1°C for 21 days. The fungus growing on PDA was pale buff with sparse aerial mycelium and acervuli containing black, slimy spore masses. Single spore isolates were used for the morphological characteristics and molecular analysis. Conidia were 5-celled. Apical and basal cells were hyaline; the three median cells were umber to olivaceous. Conidia (n = 50) were 24.3 ± 0.2 × 7.5 ± 0.1 μm, with apical appendages, typically three, averaging 24.3 ± 0.4 μm long, and a basal appendage averaging 6.7 ± 0.2 μm long. DNA sequences were obtained from the β-tubulin gene and the internal transcribed spacer (ITS1 and ITS2) and 5.8S regions of the rDNA to confirm the identification. The morphological descriptions and measurements were similar to P. virgatula (Kleb.) Steyaert (1). Although sequence data of the ITS region (GenBank Accession No. JN542546) supports the identity of the fungus as P. virgatula, the taxonomy of this genus remains confused since there are only a few type cultures, so it is impossible to use sequences in GenBank to reliably clarify species names (2). To confirm pathogenicity, six leaves of two 3-year-old seedlings were inoculated. Seven-day-old cultures grown on 10% V8 agar at 24°C under continuous fluorescent lighting were used for inoculations. The inoculum consisted of spore suspensions in sterile distilled water adjusted to 6 × 105 conidia/ml. Using a fine haired paint brush, the inoculum was brushed onto the youngest leaves, while sterile distilled water was used as the control. The plants were incubated in a clear plastic bag placed on the laboratory bench at 24°C for 48 hours, then placed on a greenhouse bench and observed weekly for symptoms. After 14 days, leaf spots ranging in size from pinpoint to 5.4 mm in diameter with a distinctive yellow halo were present. Within 35 days, the leaf spots enlarged to leaf blotches ranging in size from 11.5 × 13.3 mm up to 28.3 × 34.6 mm with brown centers and a distinctive yellow halo identical to the field symptoms. A Pestalotiopsis sp. identical to that used to inoculate the seedlings was recovered from the leaf spots and blotches, confirming Koch's postulates. The experiment was repeated twice. Pestalotiopsis leaf blight has been reported in other countries growing mangosteen, including Thailand, Malaysia, and North Queensland, Australia (3). However, to our knowledge, this is the first report of a Pestalotiopsis sp. causing a disease on mangosteen in Hawaii. Although this disease is considered a minor problem in the literature (3), effective management practices should be established to avoid potential production losses. References: (1) E. F. Guba. Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge, MA. 1961. (2) S. S. N. Maharachchikumbura et al. Fungal Div. 50:167, 2011. (3) R. C. Ploetz. Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, Oxfordshire, UK, 2003.
  7. Teoh SH, Wong GR, Teo WFA, Mazumdar P
    Plant Dis, 2023 Aug 03.
    PMID: 37537794 DOI: 10.1094/PDIS-06-23-1239-PDN
    Brassica rapa var. Chinensis (curly dwarf pak choy) is commonly grown in large-scale vertical farming aquaponic systems. In October 2022, soft rot symptoms and dark brown lesions were observed on B. rapa grown in a commercial aquaponic farm located in Perak, Malaysia. The infected stem appeared brown and water soaked. Severely infected plants produced creamy white ooze on the surface before collapsing entirely (Fig. 1A and B). Infected leaves displayed yellow-brown symptoms and eventually rotted (Fig. 1C); the healthy plants were symptomless (Fig. 1D). About 20 % of the 20,000 B. rapa plants on the farm exhibited symptoms. Ten randomly selected symptomatic plants, five with infected stems and five with infected leaves, were surface sterilized. Each tissue (1.0 cm2) was homogenized and suspended in a saline solution. The suspensions were then serially diluted and plated separately on Luria-Bertani agar. After a 16-h incubation period, stem tissue yielded 12 isolated colonies, while leaf tissue produced 8 colonies. These isolates were subjected to dereplication using RAPD-PCR (Krzewinski et al., 2001), revealing two distinct RAPD patterns. The cultures, named Pathogen Stem 2 (PS2, obtained from the stem) and Pathogen Leaf 2 (PL2, obtained from the leaf), were initially identified as Pectobacterium sp. through 16S rRNA sequence analysis (Frank et al., 2008) on the EzBioCloud 16S database (Yoon et al., 2017). Further identification of the Pectobacterium species was conducted using multilocus sequence analysis (MLSA) of the icdA, mdh, proA, and mltD genes (Ma et al., 2007). The sequences were deposited in GenBank (OQ660180, OQ660181, and OR206482-OR206489). Based on MLSA phylogeny, PS2 and PL2 were identified as Pectobacterium carotovorum and Pectobacterium aroidearum, respectively (Fig. 2A). Anaerobic assays confirmed their facultative anaerobic nature, while Gram staining revealed Gram-negative, rod-shaped morphology consistent with Pectobacterium (Fig. 2B and C). For the re-inoculation study, one-month-old healthy B. rapa plants were used. PS2 was inoculated into petioles, while PL2 was inoculated into leaves separately (3 biological replicates × 3 leaves for each replicate) using the prick inoculation method (Wei et al., 2019). Sterile needles were used to prick the plant tissues, and 10 µL of bacterial suspensions (2.40×109 CFU/mL) in saline were inoculated onto the pricked spots. Negative control using sterile saline was included. The inoculated plants were maintained in a controlled growth chamber (25 ± 1°C, relative humidity 80 ± 5%). After 48 hpi, the petiole tissue inoculated with PS2 showed bacterial soft rot symptoms (Fig. 1F) and leaves inoculated with PL2 appeared dark brown around the wound (Fig. 1G), similar to the symptoms observed in the commercial farm (Fig. 1B, C); while control plants remained asymptomatic (Fig. 1E). Bacteria were re-isolated from the inoculated petiole and leaf tissue and their identities were confirmed by RAPD-PCR. The RAPD profiles of the bacteria reisolated from the petiole and leaf tissues were the same as those of PS2 and PL2 respectively (Fig. 1H). The pathogenicity of PS2 and PL2 was thus confirmed. To our knowledge, this is the first report of bacterial soft rot on B. rapa in aquaponic systems caused by P. carotovorum and P. aroidearum in Malaysia. The identification of these pathogens is crucial for the prevention of disease outbreaks and to develop an effective disease management strategy.
  8. Keith LM, Matsumoto TK, McQuate GT
    Plant Dis, 2013 Jul;97(7):990.
    PMID: 30722533 DOI: 10.1094/PDIS-09-12-0886-PDN
    In January 2011, branch samples were collected from langsat (Lansium domesticum Corr.), a fruit from Southeast Asia with an expanding niche market in Hawaii, exhibiting corky bark symptoms similar to that found on rambutan (Nephelium lappaceum) and litchi (Litchi chinensis) (3). The orchard, located along the Hamakua Coast of Hawaii Island, had 5- to 10-year-old trees, all with corky bark symptoms. As the trees matured, the cankers increased in size and covered the branches and racemes, often resulting in little to no fruit production. Scattered along the infected bark tissue were elongated, black ascomata present in the cracks. Ascomata were removed from the cracks using a scalpel blade, placed at the edge of a water agar petri dish and gently rolled along the agar surface to remove bark tissue and other debris. Individual ascomata were placed in 10-μl drops of 10% sodium hypochlorite on fresh water agar for 20 s, removed, and placed on potato dextrose agar petri dishes amended with 25 μg/ml streptomycin. The isolates were kept at 24°C under continuous fluorescent lighting. After 9 days, black pycnidia were present, which produced smooth, hyaline, linear to curved, filiform conidia, 4 to 6 septate (mostly 6), 31.8 to 70.1 × 2.0 to 2.8 μm. The morphological descriptions and measurements were similar to those reported for Dolabra nepheliae (3). The nucleotide sequence of the internal transcribed spacer (ITS) region including ITS1, 5.8S, and ITS2 intergenic spacers was determined for strain P11-1-1and a BLAST analysis of the sequence (GenBank Accession No. JX566449) revealed 99% similarity (586/587 bp) with the sequence of D. nepheliae strain BPI 882442 on N. lappaceum from Honduras. Based on morphology and ITS sequencing, the fungus associated with the cankers was identified as the same causal agent reported on rambutan and pulasan (N. mutabile) from Malaysia (1), and later reported on rambutan and litchi in Hawaii and Puerto Rico (3). Upon closer observations of the diseased samples, sections of corky bark contained at least two larval insects. The beetles were identified as Corticeus sp. (Coleoptera: Tenebrionidae) and Araecerus sp. (Coleoptera: Anthribidae) by the USDA-ARS Systematic Entomology Laboratory (Beltsville, MD). A corky bark disease on the trunk and larger limbs of mature langsat trees in Florida was thought to be caused by Cephalosporium sp. with larvae (Lepidoptera: Tineidae) feeding on the diseased tissue (2). It is not known the extent to which either of the beetle species is associated with L. domesticum in Hawaii or if they play a role in the bark disorder. To our knowledge, this is the first report of Dolabra nepheliae being found on langsat in Hawaii. Effective management practices should be established to avoid potential production losses or spreading the disease to alternative hosts. References: (1) C. Booth and W. P. Ting. Trans. Brit. Mycol. Soc. 47:235, 1964. (2) J. Morton. Langsat. In: Fruits of Warm Climates, p. 201-203. Julia F. Morton, Miami, FL, 1987. (3) A. Y. Rossman et al. Plant Dis. 91:1685, 2007.
  9. Afifah M, Sapak Z, Mohd Noor N, Ab Wahab MZ, Mohd Anuar IS, Ramli NW, et al.
    Plant Dis, 2024 Jan 22.
    PMID: 38254324 DOI: 10.1094/PDIS-09-23-1796-PDN
    In June 2017, severe leaf spots symptoms were observed by growers on pineapple leaves of Josapine variety in in Alor Pongsu (5°01'60.00" N, 100°34' 59.99" E), Perak, northwest of Peninsular Malaysia. The early infection stage shows that several brown spots could be observed, which then would merge to form large brown to creamy white lesions that cover all the leaf surface. This infection finally caused the plant to die after a while. Disease observations conducted from 2018 - 2023 showed that 10-15% incidences of the disease were observed in several pineapple farms located in Johor, Kedah, and Sarawak. The aim of this study to confirm the causal pathogen of the disease by performing isolation, pathogenicity testing, and identification of the primary causal pathogen from 20 samples of infected leaves collected from Alor Pongsu. The leaf tissues between infected and healthy were cut into small pieces (0.5 cm 0.5 cm), and surface sterilized with 1% sodium hypochlorite for 30 seconds, followed by 70% ethanol for 30 seconds, and rinsed thrice with sterilized water before placing on Potato Dextrose Agar (PDA). The PDA plates were incubated at room temperature (28 ± 2℃) in natural light. After five days of incubation, the potential causal pathogen was purified using a single conidial isolation technique for morphological and molecular characterizations. All 32 isolates displayed similar phenotypes. Based on morphological observation on PDA, the colonies were initially white of aerial mycelia but gradually darkened as the culture aged. Microscopic features of the 14-day-old fungal culture showed that the mycelia were branched with 0- 1 septa, pigmented, and brown. Arthroconidia were ellipsoid to ovoid or round shaped, hyaline, with rounded apex, truncate base, and occurring singly or in chains averaging 9 ± 3 × 5 ± 2 μm (n = 20).  Based on the morphological characteristics, the fungal isolates were tentatively identified as Neoscytalidium species. A representative isolate of Neoscytalidium coded as UiTMPMD2 was further identified through PCR implication of the internal transcribed spacer (ITS) region using ITS1 and ITS4 primers and BLAST homology search as Neoscytalidium dimidiatum (Penz.) Crous & Slippers based on 100% similarity (575 bp out of 575 bp) to a reference sequence (accession no. KU204558.1). The sequence was deposited in Gen Bank (accession no. OR366479) with reference sequence code of INBio:30A. Pathogenicity tests were performed on 10 whole plants of Josapine pineapple (4 months old) using a leaf inoculating method (Wu et al. 2022) in a glasshouse (25-32°C) and repeated twice. Four mature leaves per each plant were wounded at two points and inoculated with mycelium PDA plugs from 7-days-old cultures of N. dimidiatum. Control plants were wounded in the same manner but inoculated with sterilized PDA plugs. Seven days post inoculation, leaf spot symptoms were observed on treated plants with the pathogen, while the control plants remained symptomless. Pathogen was successfully reisolated from brown leaf spot symptoms in which the cultural and morphological characteristics were identical to those of the originals. Neoscytalidium dimidiatum has a wide range of hosts and it has been reported in Malaysia to cause stem canker on pitahaya (Mohd et al. 2003; Khoo et al. 2023 ) and fruit rot of guava (Ismail et al. 2021). To the best of our knowledge this is the first report of N. dimidiatum causing leaf spots on pineapples in Malaysia. This report establishes a foundation for further study of N. dimidiatum that can effectively address the disease in pineapple.
  10. Zafri AS, Muhamad R, Wahab A, Mokhtar AS, Mohd Hata E
    Plant Dis, 2021 Apr 08.
    PMID: 33829857 DOI: 10.1094/PDIS-02-21-0411-PDN
    Weeds may act as inoculum reservoirs for fungal pathogens that could affect other economically important crops (Karimi et al. 2019). In February 2019, leaves of the ubiquitous invasive weed, Parthenium hysterophorus L. (parthenium weed) exhibiting symptom of blight were observed at Ladang Infoternak Sg. Siput (U), a state-owned livestock center in Perak, Malaysia. Symptoms appeared as irregularly shaped, brown-to-black necrotic lesions across the entire leaf visible from both surfaces, and frequently on the older leaves. The disease incidence was approximately 30% of 1,000 plants. Twenty symptomatic parthenium weed leaves were collected from several infested livestock feeding plots for pathogen isolation. The infected tissues were sectioned and surface-sterilized with 70% ethyl alcohol for 1 min, rinsed three times with sterile distilled water, transferred onto potato dextrose agar, and incubated at 25°C under continuous dark for 7 days. Microscopic observation revealed fungal colonies with similar characteristics. Mycelium was initially white and gradually changed to pale orange on the back of the plate but later turned black as sporulation began. Conidia were spherical or sub-spherical, single-celled, smooth-walled, 12 to 21 μm diameter (mean = 15.56 ± 0.42 μm, n= 30) and were borne on a hyaline vesicle. Based on morphological features, the fungus was preliminarily identified as Nigrospora sphaerica (Sacc) E. W. Mason (Wang et al. 2017). To confirm identity, molecular identification was conducted using isolate 1SS which was selected as a representative isolate from the 20 isolates obtained. Genomic DNA was extracted from mycelia using a SDS-based extraction method (Xia et al. 2019). Amplification of the rDNA internal transcribed spacer (ITS) region was conducted with universal primer ITS1/ITS4 (White et al. 1990; Úrbez-Torres et al. 2008). The amplicon served as a template for Sanger sequencing conducted at a commercial service provider (Apical Scientific, Malaysia). The generated sequence trace data was analyzed with BioEdit v7.2. From BLASTn analysis, the ITS sequence (GenBank accession number. MN339998) had at least 99% nucleotide identity to that of N. sphaerica (GenBank accession number. MK108917). Pathogenicity was confirmed by spraying the leaf surfaces of 12 healthy parthenium weed plants (2-months-old) with a conidial suspension (106 conidia per ml) collected from a 7 day-old culture. Another 12 plants served as a control treatment and received only sterile distilled water. Inoculation was done 2 h before sunset and the inoculated plants were covered with plastic bags for 24 h to promote conidial germination. All plants were maintained in a glasshouse (24 to 35°C) for the development of the disease. After 7 days, typical leaf blight symptoms developed on the inoculated plants consistent with the symptoms observed in the field. The pathogen was re-isolated from the diseased leaves and morphological identification revealed the same characteristics as the original isolate with 100% re-isolation frequency, thus, fulfilling Koch's postulates. All leaves of the control plants remained symptomless and the experiment was repeated twice. In Malaysia, the incidence of N. sphaerica as a plant pathogen has been recorded on several important crops such as watermelon and dragon fruit (Kee et al. 2019; Ismail and Abd Razak 2021). To our knowledge, this is the first report of leaf blight on P. hysterophorus caused by N. sphaerica from this country. This report justifies the significant potential of P. hysterophorus as an alternative weed host for the distribution of N. sphaerica. Acknowledgement This research was funded by Universiti Putra Malaysia (UPM/GP-IPB/2017/9523402). References Ismail, S. I., and Abd Razak, N. F. 2021. Plant Dis. 105:488. Karimi, K., et al. 2019. Front Microbiol. 10:19. Kee, Y. J., et al. 2019. Crop Prot. 122:165. Úrbez-Torres, J. R., et al. 2008. Plant Dis. 92:519. Wang, M., et al. 2017. Persoonia 39:118. White, T. J. et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. Xia, Y., et al. 2019. Biosci Rep. 39:BSR20182271.
  11. Nishijima KA, Follett PA, Bushe BC, Nagao MA
    Plant Dis, 2002 Jan;86(1):71.
    PMID: 30823004 DOI: 10.1094/PDIS.2002.86.1.71C
    Rambutan (Nephelium lappaceum L.) is a tropical fruit grown in Hawaii for the exotic fruit market. Fruit rot was observed periodically during 1998 and 1999 from two islands, Hawaii and Kauai, and severe fruit rot was observed during 2000 in orchards in Kurtistown and Papaikou on Hawaii. Symptoms were characterized by brown-to-black, water-soaked lesions on the fruit surface that progressed to blackening and drying of the pericarp, which often split and exposed the aril (flesh). In certain cultivars, immature, small green fruits were totally mummified. Rambutan trees with high incidence of fruit rot also showed symptoms of branch dieback and leaf spot. Lasmenia sp. Speg. sensu Sutton, identified by Centraalbureau voor Schimmelcultures (Baarn, the Netherlands), was isolated from infected fruit and necrotic leaves. Also associated with some of the fruit rot and dieback symptoms were Gliocephalotrichum simplex (J.A. Meyer) B. Wiley & E. Simmons, and G. bulbilium J.J. Ellis & Hesseltine. G. simplex was isolated from infected fruit, and G. bulbilium was isolated from discolored vascular tissues and infected fruit. Identification of species of Gliocephalotrichum was based on characteristics of conidiophores, sterile hairs, and chlamydospores (1,4). Culture characteristics were distinctive on potato dextrose agar (PDA), where the mycelium of G. bulbilium was light orange (peach) without reverse color, while G. simplex was golden-brown to grayish-yellow with dark brown reverse color. Both species produced a fruity odor after 6 days on PDA. In pathogenicity tests, healthy, washed rambutan fruits were wounded, inoculated with 30 μl of sterile distilled water (SDW) or a fungus spore suspension (105 to 106 spores per ml), and incubated in humidity chambers at room temperature (22°C) under continuous fluorescent light. Lasmenia sp. (strain KN-F99-1), G. simplex (strain KN-F2000-1), and G. bulbilium (strains KN-F2001-1 and KN-F2001-2) produced fruit rot symptoms on inoculated fruit and were reisolated from fruit with typical symptoms, fulfilling Koch's postulates. Controls (inoculated with SDW) had lower incidence or developed less severe symptoms than the fungus treatments. Inoculation tests were conducted at least twice. To our knowledge, this is the first report of Lasmenia sp. in Hawaii and the first report of the genus Gliocephalotrichum on rambutan in Hawaii. These pathogens are potentially economically important to rambutan in Hawaii. G. bulbilium has been reported previously on decaying wood of guava (Psidium guajava L.) in Hawaii (2), and the fungus causes field and postharvest rots of rambutan fruit in Thailand (3). References: (1) J. J. Ellis and C. W. Hesseltine. Bull. Torrey Bot. Club 89:21, 1962. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (3) N. Visarathanonth and L. L. Ilag. Pages 51-57 in: Rambutan: Fruit Development, Postharvest Physiology and Marketing in ASEAN. ASEAN Food Handling Bureau, Kuala Lumpur, Malaysia, 1987. (4) B. J. Wiley and E. G. Simmons. Mycologia 63:575, 1971.
  12. Damayanti TA, Alabi OJ, Rauf A, Naidu RA
    Plant Dis, 2010 Apr;94(4):478.
    PMID: 30754487 DOI: 10.1094/PDIS-94-4-0478B
    Yardlong bean (Vigna unguiculata subsp. sesquipedalis) is extensively cultivated in Indonesia for consumption as a green vegetable. During the 2008 season, a severe outbreak of a virus-like disease occurred in yardlong beans grown in farmers' fields in Bogor, Bekasi, Subang, Indramayu, and Cirebon of West Java, Tanggerang of Banten, and Pekalongan and Muntilan of Central Java. Leaves of infected plants showed severe mosaic to bright yellow mosaic and vein-clearing symptoms, and pods were deformed and also showed mosaic symptoms on the surface. In cv. 777, vein-clearing was observed, resulting in a netting pattern on symptomatic leaves followed by death of the plants as the season advanced. Disease incidence in the Bogor region was approximately 80%, resulting in 100% yield loss. Symptomatic leaf samples from five representative plants tested positive in antigen-coated plate-ELISA with potyvirus group-specific antibodies (AS-573/1; DSMZ, German Resource Center for Biological Material, Braunschweig, Germany) and antibodies to Cucumber mosaic virus (CMV; AS-0929). To confirm these results, viral nucleic acids eluted from FTA classic cards (FTA Classic Card, Whatman International Ltd., Maidstone, UK) were subjected to reverse transcription (RT)-PCR using potyvirus degenerate primers (CIFor: 5'-GGIVVIGTIGGIWSIGGIAARTCIAC-3' and CIRev: 5'-ACICCRTTYTCDATDATRTTIGTIGC-3') (3) and degenerate primers (CMV-1F: 5'-ACCGCGGGTCTTATTATGGT-3' and CMV-1R: 5' ACGGATTCAAACTGGGAGCA-3') specific for CMV subgroup I (1). A single DNA product of approximately 683 base pairs (bp) with the potyvirus-specific primers and a 382-bp fragment with the CMV-specific primers were amplified from ELISA-positive samples. These results indicated the presence of a potyvirus and CMV as mixed infections in all five samples. The amplified fragments specific to potyvirus (four samples) and CMV (three samples) were cloned separately into pCR2.1 (Invitrogen Corp., Carlsbad, CA). Two independent clones per amplicon were sequenced from both orientations. Pairwise comparison of these sequences showed 93 to 100% identity among the cloned amplicons produced using the potyvirus-specific primers (GenBank Accessions Nos. FJ653916, FJ653917, FJ653918, FJ653919, FJ653920, FJ653921, FJ653922, FJ653923, FJ653924, FJ653925, and FJ653926) and 92 to 97% with a corresponding nucleotide sequence of Bean common mosaic virus (BCMV) from Taiwan (No. AY575773) and 88 to 90% with BCMV sequences from China (No. AJ312438) and the United States (No. AY863025). The sequence analysis indicated that BCMV isolates from yardlong bean are more closely related to an isolate from Taiwan than with isolates from China and the United States. The CMV isolates (GenBank No. FJ687054) each were 100% identical and 96% identical with corresponding sequences of CMV subgroup I isolates from Thailand (No. AJ810264) and Malaysia (No. DQ195082). Both BCMV and CMV have been documented in soybean, mungbean, and peanut in East Java of Indonesia (2). Previously, BCMV, but not CMV, was documented on yardlong beans in Guam (4). To our knowledge, this study represents the first confirmed report of CMV in yardlong bean in Indonesia and is further evidence that BCMV is becoming established in Indonesia. References: (1) J. Aramburu et al. J. Phytopathol. 155:513, 2007. (2) S. K. Green et al. Plant Dis. 72:994, 1988. (3) C. Ha et al. Arch. Virol. 153:25, 2008. (4) G. C. Wall et al. Micronesica 29:101, 1996.
  13. Salunkhe VN, Bhagat YS, Lonkar SG, Kakade VD, Chavan SB, Kochewad SA, et al.
    Plant Dis, 2022 Aug 23.
    PMID: 35997672 DOI: 10.1094/PDIS-04-22-0809-PDN
    Dragon fruit (Hylocereus spp.) is gaining popularity due to high net return, medicinal importance and ability to survive under less water and poor quality soils. In year 2020 and 2021, H. undatus and H. polyrhizus plants at research field of ICAR-National Institute of Abiotic Stress Management, Baramati (18°09'30.62″N, 74°30'08″E) were affected with anthracnose disease. Out of 340 plants, 60 were symptomatic, showed disease severity up to 25 to 30%. Intermittent raining in July to September and untimely rain in November, 2021 favored the disease. Infected cladodes showed reddish to dark-brown, sunken lesions, with chlorotic haloes later converted to mature necrotic patches with prominent black acervuli. On fruits, small, light brown spots quickly turned to sunken water-soaked lesions with concentric rings of black acervuli. Infected stems were collected randomly from different plants. For pathogen isolation, lesion edge tissues (5 to 10 mm2) were excised and disinfected with 1% Sodium hypochlorite (2 min) followed by triple rinsed with sterilized water and plated on potato dextrose agar (PDA) amended with Streptomycin sulphate (30 mg/L) for 4 days at 27 ± 2°C with a 12 h photoperiod. Purified colonies of three isolates 2CT, 6CT, D6CT were obtained from successive isolation attempts. Colonies were round with smooth margins, initially pale white mycelia that changed to dark gray with pinkish-orange conidial masses. Average colony diameter was 58.3 mm at 7 DAI. Conidia were single-celled, hyaline, slightly curved, tapered tip and truncate base, with an oil globule at center. Average conidia size (n=50) was 25.7 (±2.3) μm × 3.7 (±0.2) μm, L/W ratio=6.9. Conidia were initiated from an acervular conidiomata with intermittent dark brown, septate, straight, pointed setae 114 (±35) μm long × 4.5 (±1.1) μm wide. Appressoria were dark brown, lobate or round, mostly in groups, measuring 11 (±2.4) × 6.6 (±0.8) μm. Morphological characters were consistent with Colletotrichum truncatum (Schwein.) Andrus & W.D. Moore (Damm et al. 2009). For molecular identity of three isolates, partial internal transcribed spacer (ITS) region, actin, β-tubulin (TUB2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified with ITS1/ITS4, ACT512F/ACT783R, BT2A/BT2B, and GDF1/GDR1 primers, respectively. Sequences were deposited in GenBank (ITS: OK639098 to OK639100; Actin: OM927967, OM927968, ON099061; TUB2: OM927969, ON099062, ON099063; GAPDH: ON099064, ON099065). A maximum likelihood phylogenetic tree based on all sequenced loci in MEGA11 shows the clustering of present isolates in the C. truncatum clade. For pathogenicity, 4 month old unwounded stems of H. undatus and H. polyrhizus were inoculated with a spore spray (1x106/ml conidia) of C. truncatum. For each isolate, three plants were inoculated. Plants inoculated with sterilized water represented the negative control. Inoculated and control plants were kept separately at 25 ± 2°C temperature and >85% relative humidity. Inoculated plants showed minute, sunken, water soaked, reddish brown spots which were converted to sunken patches with black acervuli at 15 DAI. No symptoms were observed in the negative control. Pathogenicity test was repeated twice and the pathogen was re-isolated from symptomatic stems showed similar morphology with C. truncatum. Based on morphological and molecular characteristics and pathogenicity test, pathogen identified as C. truncatum. Previously, dragon fruit anthracnose caused by C. truncatum was reported from China (Guo et al. 2014) and Malaysia (Vijaya et al. 2015). To our knowledge, this is the first report of C. truncatum cause of dragon fruit anthracnose in India. Detailed pathogen diagnostics may help in formulating effective, on time, appropriate disease management strategies.
  14. Mahmodi F, Kadir JB, Puteh A, Wong MY, Nasehi A
    Plant Dis, 2013 Feb;97(2):287.
    PMID: 30722331 DOI: 10.1094/PDIS-08-12-0756-PDN
    In July 2011, a severe outbreak of pod and stem blight was observed on lima bean (Phaseolus lunatus L.) plants grown in the Cameron Highlands, located in Pahang State, Malaysia. Disease incidence varied from 33 to 75% in different fields. Pods and stems exhibited withered, light brown to reddish brown necrotic areas. Sub-circular and brown lesions were produced on the leaves. These lesions varied in size, often reaching a diameter of 1 to 2 cm. After tissue death, numerous pycnidia were observed on the surface of the pod or stem. The pycnidia diameter varied from 155 to 495 μm, averaging 265.45 μm, and on the surface of the pod or stem, pycnidia were often arranged concentrically or linearly, respectively. Pycnidiospores were hyaline, 1-celled, usually straight, and rarely, slightly curved. The α-spores varied from 5.5 to 9.0 × 2.5 to 4.0 μm; averaging 7.3 × 3.5 μm. The β-spores found either alone or with pycnidiospores in pycnidia were slender, hyaline, nonseptate, and straight or curved. Size varied from 15.8 to 38.0 × 1.3 to 2.1 μm; averaging 25.86 × 1.8 μm. The colony characteristics were recorded from pure cultures grown on potato dextrose agar plates, and incubated in darkness for 7 days at 25 °C, then exposed to 16/8 h light and dark periods at 25°C for a further 14 to 21 days. Morphological characteristics of the colonies and spores on PDA matched those described for P. phaseolorum var. sojae (2). Colonies were white, compact, with wavy mycelium and stromata with pycnidia that contained abundant β-spores. Sequence analysis of the ribosomal DNA internal transcribed spacer obtained from the Malaysian isolate FM1 (GenBank Accession No. JQ514150) using primers ITS5 and ITS4 (1) aligned with deposited sequences from GenBank confirmed identity and revealed 99% to 100% DNA similarity with P. phaseolorum strains (AY577815, AF001020, HM012819, JQ936148). The isolate FM1 was used for pathogenicity testing. Five non-infected detached leaves and pods of 4-week-old lima bean were surface sterilized and inoculated by placing 10 μl of conidial suspension (106 conidia ml-1) on the surface of leaves and pods using either the wound/drop or non-wound/drop method and distilled water used as control (3). The inoculated leaves and pods were incubated at 25 °C and 98% RH, and the experiment was performed twice. Disease reactions and symptoms were evaluated after inoculation. After one week, typical symptoms of pod and stem blight appeared with formation of pycnidia on the surface of the tissues, but not on non-inoculated controls. P. phaseolorum var. sojae was consistently reisolated from symptoms. To our knowledge, this is the first report of P. phaseolorum var. sojae causing pod and stem blight of lima bean in Malaysia. References: (1) R. Ford et al. Aust. Plant Pathol. 33:559, 2004. (2) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. American Phytopathological Society, St. Paul, MN, 1999. (3) P. P. Than et al. Plant Pathol. 57:562, 2008.
  15. Golkhandan E, Kamaruzaman S, Sariah M, Abidin MZZ, Nasehi A, Nazerian E
    Plant Dis, 2013 Aug;97(8):1109.
    PMID: 30722490 DOI: 10.1094/PDIS-01-13-0042-PDN
    Symptoms of water-soaked lesions and soft rot were first observed in June 2011 on bell pepper fruits (Capsicum annuum cv. Annuum) in the two main regions of pepper production in Malaysia (Cameron Highlands and Johor State). Economic losses exceeded 40% in severely infected fields and greenhouses with the estimated disease incidence of 70%. In pepper fruits damaged by insects, sunscald, or other factors, symptoms initially appeared in the peduncle and calyx tissues and entire fruits were turned into watery masses within 2 to 6 days. Fruits infected in the field tended to collapse and hang on the plant. When the contents leaked out, the outer skin of the fruit dried and remained attached to the plant. Field-grown transplants and infected soil were identified as probable sources of inocula. A total of 50 attached fruits were collected from 10 pepper fields and greenhouses located in the two growing regions. Tissue from the margins of water-soaked lesions was surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile water, dried, and plated onto nutrient agar (NA) and eosin methylene blue agar (EMB) media (3). A similar bacterium was isolated from all samples. After 2 days, white to creamy bacterial colonies on NA and emerald green colonies on EMB developed. Five independent strains were subjected to further biochemical, molecular, and pathogenicity tests. Bacterial strains were gram-negative, motile rods, grew at 37°C, were facultatively anaerobic, oxidase-negative, phosphatase-negative, and catalase-positive. They degraded pectate, were sensitive to erythromycin, did not utilize Keto-methyl glucoside, were indole production-negative, and reduced sugars from sucrose (3). Acid production was negative from sorbitol and arabitol, but positive from melibiose and citrate. PCR amplification of the pel gene by Y1 and Y2 primers produced a 434-bp fragment (2). Amplification of the intergenic transcribed spacer (ITS) region by G1 and L1 primers (4) gave two amplicons ca. 550 and 580 bp long. The expected amplicon was not produced with any of the strains using primers Br1f/L1r and Eca1f/Eca2r (1), whereas a 550-bp PCR product, typical of Pectobacterium carotovorum subsp. carotovorum, was obtained with primers EXPCCF and EXPCCR (1). Based on biochemical and molecular characteristics, and analysis of PCR-RFLP of 16S-ITS-23R rRNA genes using Rsa I enzyme (4), all five bacterial strains were identified as P. carotovorum subsp. carotovorum. BLAST analysis of the 16S rRNA sequence (GenBank Accession No KC189032) showed 100% identity to the 16S rRNA of P. carotovorum subsp. carotovorum strain PPC192. For pathogenicity tests, four mature pepper fruits of cv. Annuum were inoculated by injecting 10 μl of a bacterial suspension (108 CFU/ml) into pericarps and the fruits were incubated in a moist chamber at 80 to 90% relative humidity and 30°C. After 72 h, water-soaked lesions similar to those observed in the fields and greenhouses were observed and bacteria with the same characteristics were consistently reisolated, thereby fulfilling Koch's postulates. Symptoms were not observed on water-inoculated controls. References: (1) S. Baghaee-Ravari et al. Eur. J. Plant Pathol. 129:413, 2001. (2) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (3) N. W Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society Press, St Paul, MN, 2001. (4) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
  16. Golkhandan E, Sijam K, Meon S, Ahmad ZAM, Nasehi A, Nazerian E
    Plant Dis, 2013 Aug;97(8):1110.
    PMID: 30722504 DOI: 10.1094/PDIS-01-13-0112-PDN
    Soft rot of cabbage (Brassica rapa) occurs sporadically in Malaysia, causing economic damage under the hot and wet Malaysian weather conditions that are suitable for disease development. In June 2011, 27 soft rotting bacteria were isolated from cabbage plants growing in the Cameron Highlands and Johor State in Malaysia where the economic losses exceeded 50% in severely infected fields and greenhouses. Five independent strains were initially identified as Pectobacterium wasabiae based on their inability to grow at 37°C, and elicit hypersensitive reaction (HR) on Nicotiana tabaccum and their ability to utilize raffinose and lactose. These bacterial strains were gram-negative, rod-shaped, N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG-positive and positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. All strains were negative for indole production, phosphatase activity, reducing sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-methyl-D-glucoside, and D-arabitol. All the strains exhibited pectolytic activity on potato slices. PCR assays were conducted to distinguish P. wasabiae from P. carotovorum subsp. brasiliensis, P. atrosepticum, and other Pectobacterium species using primers Br1f/L1r (2), Eca1f/Eca2r (1), and EXPCCF/EXPCCR, respectively. DNA from strains did not yield the expected amplicon with the Br1f/L1r and Eca1f/Eca2r, whereas a 550-bp amplicon typical of DNA from P. wasabiae was produced with primers EXPCCF/EXPCCR. ITS-RFLP using the restriction enzyme, Rsa I, produced similar patterns for the Malaysian strains and the P. wasabiae type strain (SCRI488), but differentiated it from P. carotovora subsp. carotovora, P. atrosepticum, P. carotovorum subsp. brasiliensis, and Dickeya chrysanthemi type strains. BLAST analysis of the 16S rRNA DNA sequence (GenBank Accession No. KC445633) showed 99% identity to the 16S rRNA of Pw WPP163. Phylogenetic reconstruction using concatenated DNA sequences of mdh and gapA from P. wasabiae Cc6 (KC484657) and other related taxa (4) clustered Malaysian P. wasabiae strains with P. wasabiae SCRI488, readily distinguishing it from other closely related species of Pectobacterium. Pathogenicity assays were conducted on leaves and stems of four mature cabbage plants for each strain (var. oleifera) by injecting 10 μl of a bacterial suspension (108 CFU/ml) into either stems or leaves, and incubating them in a moist chamber at 80 to 90% relative humidity at 30°C. Water-soaked lesions similar to those observed in the fields and greenhouses were observed 72 h after injection and bacteria with similar characteristics were consistently reisolated. Symptoms were not observed on water-inoculated controls. The pathogenicity test was repeated with similar results. P. wasabiae was previously reported to cause soft rot of horseradish in Japan (3). However, to our knowledge, this is the first report of P. wasabiae infecting cabbage in Malaysia. References: (1) S. H. De Boer and L. J. Ward. Phytopathology 85:854, 1995. (2) V. Duarte et al. J. Appl. Microbiol. 96:535, 2004. (3) M. Goto and K. Matsumoto. Int. J. Syst. Bacteriol. 37:130, 1987. (4) B. Ma et al. Phytopathology 97:1150, 2007.
  17. Salati M, Wong MY, Sariah M, Nik Masdek H
    Plant Dis, 2010 May;94(5):642.
    PMID: 30754434 DOI: 10.1094/PDIS-94-5-0642A
    In December 2008, infected leaves of Trichosanthes cucumerina were observed on commercial cucurbit farms located in Pontian, Johor (south of West Malaysia). Bright yellow and small necrotic lesions were observed on the adaxial surface of the leaves, whereas sporangiophores were observed on pale yellowish brown-to-brown lesions on the abaxial surface. The length and width of the sporangia ranged from 19 to 36 μm (28.6) and 11 to 23 μm (17.6), respectively. The length of the sporangiophores ranged from 310 to 450 μm, with an average length of 380 μm. The pathogen was identified as Pseudoperonospora cubensis on the basis of the morphological criteria described by Palti and Cohen (2). To confirm the morphological findings, DNA was extracted from symptomatic tissue and the internal transcribed spacer (ITS) region was PCR amplified using primers ITS5-P2 and ITS4 (3). The appropriate-sized amplicon was gel excised and column purified and then submitted for direct sequencing. The resulting 802 bp amplified ITS region was 100% identical to published P. cubensis sequences (GenBank Accession Nos. EU876603, EU876584, and AY198306). This sequence was deposited with NCBI GenBank under the Accession No. GU233293. In this study, pathogenicity tests were conducted using detached leaf disc assays (1) and a P. cubensis isolate obtained from T. cucumerina. For this purpose, leaf discs were excised from 6- to 8-week-old leaves of T. cucumerina using a 20-mm cork borer. Five leaf discs were placed with their abaxial surface facing upward on moist filter paper in petri dishes. Each of four leaf discs was inoculated with four 10-μl droplets of a 1 × 105 per ml sporangial suspension, whereas the fifth disc was inoculated with water droplets and served as a control. Three replications were completed. The leaf discs were placed in darkness at 14 ± 2°C for 24 h and subsequently incubated with a 12-h photoperiod. After 10 days, sporulation was observed on the sporangia-inoculated leaf discs with similar morphological features to the initial field samples. To our knowledge, this is the first report of P. cubensis causing downy mildew of T. cucumerina in Malaysia. References: (1) A. Lebeda and M. P. Widrlechner. J. Plant Dis. Prot. 110:337, 2003. (2) J. Palti and Y. Cohen. Phytoparasitica 8:109, 1980. (3) H. Voglmayr and O. Constantinescu. Mycol. Res. 112:487, 2008.
  18. Choi ED, Kim Y, Lee Y, Jeong MH, Kim GH, Song JH, et al.
    Plant Dis, 2021 Feb 16.
    PMID: 33591825 DOI: 10.1094/PDIS-09-20-1948-PDN
    Pears (Pyrus pylifolia L.) are cultivated nationwide as one of the most economically important fruit trees in Korea. At the end of October 2019, bleeding canker was observed in a pear orchard located in Naju, Jeonnam Province (34°53'50.54″ N, 126°39'00.32″ E). The canker was observed on trunks and branches of two 25-year-old trees, and the diseased trunks and branches displayed partial die-back or complete death. When the bark was peeled off from the diseased trunks or branches, brown spots or red streaks were found in the trees. Bacterial ooze showed a rusty color and the lesion was sap-filled with a yeasty smell. Trunks displaying bleeding symptoms were collected from two trees. Infected bark tissues (3 × 3 mm) from the samples were immersed in 70% ethanol for 1 minute, rinsed three times in sterilized water, ground to fine powder using a mortar and pestle, and suspended in sterilized water. After streaking each suspension on Luria-Bertani (LB) agar, the plates were incubated at 25°C without light for 2 days. Small yellow-white bacterial colonies with irregular margins were predominantly obtained from all the samples. Three representative isolates (ECM-1, ECM-2 and ECM-3) were subjected to further characterization. These isolates were cultivated at 39 C, and utilized (-)-D-arabinose, (+) melibiose, (+)raffinose, mannitol and myo-inositol but not 5-keto-D-gluconate, -gentiobiose, or casein. These isolates were identified as Dickeya sp. based on the sequence of 16S rRNA (MT820458-820460) gene amplified using primers 27f and 1492r (Heuer et al. 2000). The 16S rRNA sequences matched with D. fangzhongdai strain ND14b (99.93%; CP009460.1) and D. fangzhongdai strain PA1(99.86%; CP020872.1). The recA, fusA, gapA, purA, rplB, and dnaX genes and the intergenic spacer (IGS) regions were also sequenced as described in Van der wolf et al. (2014). The recA (MT820437-820439), fusA (MT820440-820442), gapA (MT820443-820445), purA (MT820446-820448), rplB (MT820449-820451), dnaX (MT820452-820454) and IGS (MT820455-820457) sequences matched with D. fangzhongdai strains JS5, LN1 and QZH3 (KT992693-992695, KT992697-992699, KT992701-992703, KT992705-992707, KT992709-992711, KT992713-992715, and KT992717-992719, respectively). A neighbor-joining phylogenetic analysis based on the concatenated recA, fusA, gapA, purA, rplB, dnaX and IGS sequences placed the representative isolates within a clade comprising D. fangzhongdai. ECM-1 to 3 were grouped into a clade with one strain isolated from waterfall, D. fangzhongdai ND14b from Malaysia. Pathogenicity test was performed using isolate ECM-1. Three two-year-old branches and flower buds on 10-year-old pear tree (cv. Nittaka), grown at the National Institute of Horticultural and Herbal Science Pear Research Institute (Naju, Jeonnam Province in Korea), were inoculated with 10 μl and 2 μl of a bacterial suspension (108 cfu/ml), respectively, after wounding inoculation site with a sterile scalpel (for branch) or injecting with syringe (for flower bud). Control plants were inoculated with water. Inoculated branches and buds in a plastic bag were placed in a 30℃ incubator without light for 2 days (Chen et al. 2020). Both colorless and transparent bacterial ooze and typical bleeding canker were observed on both branches and buds at 3 and 2 weeks post inoculation, respectively. No symptoms were observed on control branches and buds. This pathogenicity assay was conducted three times. We reisolated three colonies from samples displaying the typical symptoms and checked the identity of one by sequencing the dnaX locus. Dickeya fangzhongdai has been reported to cause bleeding canker on pears in China (Tian et al. 2016; Chen et al. 2020). This study will contribute to facilitate identification and control strategies of this disease in Korea. This is the first report of D. fangzhongdai causing bleeding canker on pears in Korea.
  19. Mahmodi F, Kadir JB, Wong MY, Nasehi A, Soleimani N, Puteh A
    Plant Dis, 2013 May;97(5):687.
    PMID: 30722185 DOI: 10.1094/PDIS-09-12-0843-PDN
    Bok choy (Brassica chinensis L.) is a temperate vegetable grown in the cool highland areas of Malaysia. In June 2010, vegetable growing areas of the Cameron Highlands, located in Pahang State, Malaysia, were surveyed for the prevalence of anthracnose disease caused by Colletotrichum species. Diseased samples were randomly collected from 12 infested fields. Anthracnose incidence on bok choy varied from 8 to 36% in different nursery fields. Disease symptoms initially appeared as small water-soaked spots scattered on the leaf petioles of young plants. As these spots increased in size, they developed irregular round spots that turned to sunken grayish brown lesions surrounded by brownish borders. When the lesions were numerous, leaves collapsed. Pale buff to salmon conidial mass and acervuli were observed on well-developed lesions. The acervuli diameter varied in size from 198 to 486 μm, averaging 278.5 μm. Morphological and cultural characteristics of the fungus were examined on potato dextrose agar incubated for 7 days at 25 ± 2°C under constant fluorescent light. Vegetative mycelia were hyaline, septate, branched, and 2 to 7 μm in diameter. The color of the fungal colonies was grayish brown. Conidia were hyaline, aseptate, falcate, apices acute, and 21.8 to 28.5 × 2.6 to 3.4 mm. Setae were pale brown to dark brown, 75 to 155 μm long, base cylindrical, and tapering towards the acute tip. Appressoria were solitary or in dense groups, light to dark brown, entire edge to lobed, roundish to clavate, 6.5 to 14 × 5.8 to 8.6 μm, averaging 9.2 × 6.8 μm, and had a L/W ratio of 1.35. Based on the keys outlined by Mordue 1971 (2) and Sutton 1980 (3), the characteristics of this fungus corresponded to Colletotrichum capsici. Sequence analysis of the ITS-rDNA obtained from the Malaysian strain CCM3 (GenBank Accession No. JQ685746) using primers ITS5 and ITS4 (1) when aligned with deposited sequences from GenBank revealed 99 to 100% sequence identity with C. capsici strains (DQ286158, JQ685754, DQ286156, GQ936210, and GQ369594). A representative strain CCM3 was used for pathogenicity testing. Four non-infected detached leaves of 2-week-old B. chinensis were surface-sterilized and inoculated by placing 10 μl of conidial suspension (106 conidia ml-1) using either the wound/drop or non-wound/drop method, and distilled water was used as a control (1). Leaves were incubated at 25°C, 98% RH. The experiment was repeated twice. Five days after inoculation, typical anthracnose symptoms with acervuli formation appeared on the surface of tissues inoculated with the spore suspension, but not on the water controls. A fungus with the characteristics of C. capsici was recovered from the lesions on the inoculated leaves. Anthracnose caused by C. capsici has been reported on different vegetable crops, but not on bok choy (3). To the best of our knowledge, this is the first report of C. capsici causing anthracnose on bok choy in Malaysia. References: (1) R. Ford et al. Aust. Plant Pathol. 33:559, 2004. (2) J. E. M. Mordue. CMI Description of Pathogenic Fungi and Bacteria. Commonwealth Mycol. Inst., Kew, UK. 1971. (3) B. C. Sutton. The Genus Glomerella and its anamorph Colletotrichum. CAB International, Wallingford, UK, 1992. (4) P. P. Than et al. Plant Pathol. 57:562, 2008.
  20. Johari MIH, Zulperi D, Saad N, Ismail SI, Jamian S, Abdullah S, et al.
    Plant Dis, 2023 Nov 08.
    PMID: 37938907 DOI: 10.1094/PDIS-07-23-1278-PDN
    Ceylon ironwood (Mesua ferrea Linn.) or Penaga lilin is one of Asia's most popular tropical herbal plants, including Malaysia (Sharma et al., 2017). The trees are cultivated for their aesthetic value and pharmacological properties, especially as traditional remedies for asthma, dermatopathy, inflammation, and rheumatic conditions (Adib et al., 2019). In August 2022, a disease survey was conducted on Ceylon ironwood trees ranging from 5 to 12 years old in Botanical Park, Putrajaya, Malaysia, with 80% exhibiting shoot dieback disease of the 15 trees exhibiting shoot dieback disease. Symptoms include irregular, water-soaked with brown lesions on young leaves and shoots, where the small lesion coalesced and formed broad necrotic regions, subsequently causing dieback and gradual defoliation. Three infected shoots were collected from each tree, excised into small pieces (10 to 20 mm), immersed with 75% ethanol for 3 min, washed with 2% NaOCl solution for 1 min, and rinsed twice for 1 min in sterilized distilled water. A 10 µl aliquot of the sample suspension was streaked onto nutrient agar (NA) and incubated for 24 h to 48 h at 35 °C. A total of 15 isolates with similar morphology were obtained, and each isolate was re-streaked three times to obtain pure colonies that were round, smooth, with irregular edges, and produced yellow pigment in culture. All isolates were Gram-negative, negative for indole production, and utilized glucose, maltose, trehalose, sucrose, D-lactose, and pectin. Three representative isolates (C001, C002, and C003) with similar morphology were selected for further characterization. The total genomic DNA of all isolates was extracted from overnight cultures using Geneaid™ DNA Isolation Kit (Geneaid Biotech Ltd., Taiwan). PCR amplification of 16S rDNA (Zhou et al., 2015) and species-specific infB (Brady et al., 2008) genes was performed, and each of the ~1500 bp and ~900 bp amplicons were sequenced. BLASTn and phylogenetic analyses revealed all isolates were 100% identical to Pantoea anthophila (P. anthophila) LGM 2558 strains (Accession Nos. NR_116749 and NR_116113) for the 16S rDNA gene. They were 99% identical to P. anthophila CL1 strain (Accession Number CP110473) for infB gene. These sequences were later deposited in the GenBank (Accession Nos. OQ772233, OQ772234, and OQ772235 for 16S rDNA gene, and OQ803527, OQ803528, and OQ803529 for infB gene). For the pathogenicity test, healthy Ceylon ironwood seedlings' shoots were inoculated with 10 mL of each isolate suspension (1 x 108 CFU/ml) by spraying the inoculum on the young shoots using a sterilized spray bottle. Control seedlings were inoculated with sterile water. The inoculated shoots were covered with a sealed plastic bag to maintain the moisture and were kept in the greenhouse with temperatures ranging from 26 to 35 °C. The experiments were repeated twice, with three replicates for each treatment. Inoculated shoots showed dieback symptoms like natural infection, including irregular, water-soaked, and brown lesions on leaves and young shoots at 10 days post-inoculation. Control seedlings remained asymptomatic. The pathogen was re-isolated and identified via sequencing of the 16S rDNA and infB genes, thus fulfilling Koch's postulates. Previously, P. anthophila has been reported to cause soft rot in wampee plants in China (Zhou et al., 2015) and leaf blight of cotton in Pakistan (Tufail et al., 2020). To our knowledge, this is the first report of P. anthophila causing shoot dieback disease of Ceylon ironwood trees in Malaysia. Plant disease management strategies need to be established to reduce losses due to P. anthophila infection since the pathogen could limit Ceylon ironwood tree production in Malaysia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links