METHODS: Patients referred to the Endoscopic Unit for colonoscopy were recruited for the study. Stool samples were collected prior to bowel preparation, and tested for occult blood with both gFOBT and FIT. Dietary restriction was not imposed. To assess the validity of either tests or in combination to detect a neoplasm or cancer in the colon, their false positive rates, their sensitivity (true positive rate) and the specificity (true negative rate) were analyzed and compared.
RESULTS: One hundred and three patients were analysed. The sensitivity for picking up any neoplasia was 53% for FIT, 40% for gFOBT and 23.3% for the combination. The sensitivities for picking up only carcinoma were 77.8% , 66.7% and 55.5%, respectively. The specificity for excluding any neoplasia was 91.7% for FIT, 74% for gFOBT and 94.5% for a combination, whereas for excluding only carcinomas they were 84%, 73.4% and 93.6%. Of the 69 with normal colonoscopic findings, FOBT was positive in 4.3%, 23.2 %and 2.9% for FIT, gFOBT, or combination of tests respectively.
CONCLUSION: FIT is the recommended method if we are to dispense with dietary restriction in our patients because of its relatively low-false positivity and better sensitivity and specificity rates.
BACKGROUND: No study has directly compared the risk factors associated with subclinical coronary atherosclerosis and CRA.
STUDY: This was a cross-sectional study using multinomial logistic regression analysis of 4859 adults who participated in a health screening examination (2010 to 2011; analysis 2014 to 2015). CAC scores were categorized as 0, 1 to 100, or >100. Colonoscopy results were categorized as absent, low-risk, or high-risk CRA.
RESULTS: The prevalence of CAC>0, CAC 1 to 100 and >100 was 13.0%, 11.0%, and 2.0%, respectively. The prevalence of any CRA, low-risk CRA, and high-risk CRA was 15.1%, 13.0%, and 2.1%, respectively. The adjusted odds ratios (95% confidence interval) for CAC>0 comparing participants with low-risk and high-risk CRA with those without any CRA were 1.35 (1.06-1.71) and 2.09 (1.29-3.39), respectively. Similarly, the adjusted odds ratios (95% confidence interval) for any CRA comparing participants with CAC 1 to 100 and CAC>100 with those with no CAC were 1.26 (1.00-1.6) and 2.07 (1.31-3.26), respectively. Age, smoking, diabetes, and family history of CRC were significantly associated with both conditions.
CONCLUSIONS: We observed a graded association between CAC and CRA in apparently healthy individuals. The coexistence of both conditions further emphasizes the need for more evidence of comprehensive approaches to screening and the need to consider the impact of the high risk of coexisting disease in individuals with CAC or CRA, instead of piecemeal approaches restricted to the detection of each disease independently.
METHODS: A multi-center, prospective colonoscopy study involving 16 Asia-Pacific regions was performed from 2008 to 2015. Consecutive self-referred CRC screening participants aged 40-70 years were recruited, and each subject received one direct optical colonoscopy. The prevalence of CRC, ACN, and colorectal adenoma was compared among subjects with different FDRs affected using Pearson's χ2 tests. Binary logistic regression analyses were performed to evaluate the risk of these lesions, controlling for recognized risk factors including age, gender, smoking habits, alcohol drinking, body mass index, and the presence of diabetes mellitus.
RESULTS: Among 11,797 asymptomatic subjects, the prevalence of CRC was 0.6% (none: 0.6%; siblings: 1.1%; mother: 0.5%; father: 1.2%; ≥2 members: 3.1%, P<0.001), that of ACN was 6.5% (none: 6.1%; siblings: 8.3%; mother: 7.7%; father: 8.7%; ≥2 members: 9.3%, P<0.001), and that of colorectal adenoma was 29.3% (none: 28.6%; siblings: 33.5%; mother: 31.8%; father: 31.1%; ≥2 members: 38.1%, P<0.001). In multivariate regression analyses, subjects with at least one FDR affected were significantly more likely to have CRC (adjusted odds ratio (AOR)=2.02-7.89), ACN (AOR=1.55-2.06), and colorectal adenoma (AOR=1.31-1.92) than those without a family history. The risk of CRC (AOR=0.90, 95% confidence interval (CI) 0.34-2.35, P=0.830), ACN (AOR=1.07, 95% CI 0.75-1.52, P=0.714), and colorectal adenoma (AOR=0.96, 95% CI 0.78-1.19, P=0.718) in subjects with either parent affected was similar to that of subjects with their siblings affected.
CONCLUSIONS: The risk of colorectal neoplasia was similar among subjects with different FDRs affected. These findings do not support the need to discriminate proband identity in screening participants with affected FDRs when their risks of colorectal neoplasia were estimated.