Displaying publications 81 - 88 of 88 in total

Abstract:
Sort:
  1. Zain JM, Fauzi AM
    Conf Proc IEEE Eng Med Biol Soc, 2007 10 20;2006:3270-3.
    PMID: 17945763
    This paper discussed security of medical images and reviewed some work done regarding them. A fragile watermarking scheme was then proposed that could detect tamper and subsequently recover the image. Our scheme required a secret key and a public chaotic mixing algorithm to embed and recover a tampered image. The scheme was also resilient to VQ attack. The purposes were to verify the integrity and authenticity of medical images. We used 800 x 600 x 8 bits ultrasound (US) greyscale images in our experiment. We tested our algorithm for up to 50% tampered block and obtained 100% recovery for spread-tampered block.
    Matched MeSH terms: Computer Security
  2. Zain JM, Fauzi AM, Aziz AA
    Conf Proc IEEE Eng Med Biol Soc, 2007 10 20;2006:5459-62.
    PMID: 17946306
    Digital watermarking medical images provides security to the images. The purpose of this study was to see whether digitally watermarked images changed clinical diagnoses when assessed by radiologists. We embedded 256 bits watermark to various medical images in the region of non-interest (RONI) and 480K bits in both region of interest (ROI) and RONI. Our results showed that watermarking medical images did not alter clinical diagnoses. In addition, there was no difference in image quality when visually assessed by the medical radiologists. We therefore concluded that digital watermarking medical images were safe in terms of preserving image quality for clinical purposes.
    Matched MeSH terms: Computer Security
  3. Sudha R, Thiagarajan AS, Seetharaman A
    Pak J Biol Sci, 2007 Jan 01;10(1):102-6.
    PMID: 19069993
    The existing literatures highlights that the security is the primary factor which determines the adoption of Internet banking technology. The secondary information on Internet banking development in Malaysia shows a very slow growth rate. Hence, this study aims to study the banking customers perception towards security concern and Internet banking adoption through the information collected from 150 sample respondents. The data analysis reveals that the customers have much concern about security and privacy issue in adoption of Internet banking, whether the customers are adopted Internet banking or not. Hence, it infers that to popularize Internet banking system there is a need for improvement in security and privacy issue among the banking customers.
    Matched MeSH terms: Computer Security*
  4. Zain JM, Fauzi AR
    PMID: 18003297
    This paper will study and evaluate watermarking technique by Zain and Fauzi [1]. Recommendations will then be made to enhance the technique especially in the aspect of recovery or reconstruction rate for medical images. A proposal will also be made for a better distribution of watermark to minimize the distortion of the Region of Interest (ROI). The final proposal will enhance AW-TDR in three aspects; firstly the image quality in the ROI will be improved as the maximum change is only 2 bits in every 4 pixels, or embedding rate of 0.5 bits/pixel. Secondly the recovery rate will also be better since the recovery bits are located outside the region of interest. The disadvantage in this is that, only manipulation done in the ROI will be detected. Thirdly the quality of the reconstructed image will be enhanced since the average of 2 x 2 pixels would be used to reconstruct the tampered image.
    Matched MeSH terms: Computer Security*
  5. Teoh AB, Goh A, Ngo DC
    IEEE Trans Pattern Anal Mach Intell, 2006 Dec;28(12):1892-901.
    PMID: 17108365
    Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the Random Multispace Quantization (RMQ) of biometric and external random inputs.
    Matched MeSH terms: Computer Security*
  6. Mohan J, Razali Raja Yaacob R
    Int J Med Inform, 2004 Mar 31;73(3):217-27.
    PMID: 15066550
    Telehealth refers to the integration of information, telecommunication, human-machine interface technologies and health technologies to deliver health care, to promote the heath status of the people and to create health. The Malaysian Telehealth Application will, on completion, provide every resident of the country an electronic Lifetime Health Record (LHR) and Lifetime Health Plan (LHP). He or she will also hold a smart card that will contain a subset of the data in the Lifetime Health Record. These will be the means by which Malaysians will receive "seamless continuous quality care" across a range of health facilities and health care providers, and by which Malaysia's health goal of a nation of "healthy individuals, families and communities" is achieved. The challenges to security and privacy in providing access to an electronic Lifetime Health Record at private and government health facilities and to the electronic Lifetime Health Plan at homes of consumers require not only technical mechanisms but also national policies and practices addressing threats while facilitating access to health data during health encounters in different care settings. Organisational policies establish the goals that technical mechanisms serve. They should outline appropriate uses and access to information, create mechanisms for preventing and detecting violations, and set sanctions for violations. Some interesting innovations have been used to address these issues against the background of the launching of the multimedia supercorridor (MSC) in Malaysia.
    Matched MeSH terms: Computer Security*
  7. Goh A
    Stud Health Technol Inform, 2000;77:1069-73.
    PMID: 11187485
    Multiparty transactional frameworks--i.e. Electronic Data Interchange (EDI) or Health Level (HL) 7--often result in composite documents which can be accurately modelled using hyperlinked document-objects. The structural complexity arising from multiauthor involvement and transaction-specific sequencing would be poorly handled by conventional digital signature schemes based on a single evaluation of a one-way hash function and asymmetric cryptography. In this paper we outline the generation of structure-specific authentication hash-trees for the the authentication of transactional document-objects, followed by asymmetric signature generation on the hash-tree value. Server-side multi-client signature verification would probably constitute the single most compute-intensive task, hence the motivation for our usage of the Rabin signature protocol which results in significantly reduced verification workloads compared to the more commonly applied Rivest-Shamir-Adleman (RSA) protocol. Data privacy is handled via symmetric encryption of message traffic using session-specific keys obtained through key-negotiation mechanisms based on discrete-logarithm cryptography. Individual client-to-server channels can be secured using a double key-pair variation of Diffie-Hellman (DH) key negotiation, usage of which also enables bidirectional node authentication. The reciprocal server-to-client multicast channel is secured through Burmester-Desmedt (BD) key-negotiation which enjoys significant advantages over the usual multiparty extensions to the DH protocol. The implementation of hash-tree signatures and bi/multidirectional key negotiation results in a comprehensive cryptographic framework for multiparty document-objects satisfying both authentication and data privacy requirements.
    Matched MeSH terms: Computer Security*
  8. Goh A
    PMID: 10724956
    In this paper, we present a Java-based framework for the processing, storage and delivery of Electronic Medical Records (EMR). The choice of Java as a developmental and operational environment ensures operability over a wide-range of client-side platforms, with our on-going work emphasising migration towards Extensible Markup Language (XML) capable Web browser clients. Telemedicine in support of womb-to-tomb healthcare as articulated by the Multimedia Supercorridor (MSC) Telemedicine initiative--which motivated this project--will require high-volume data exchange over an insecure public-access Wide Area Network (WAN), thereby requiring a hybrid cryptosystem with both symmetric and asymmetric components. Our prototype framework features a pre-transaction authentication and key negotiation sequence which can be readily modified for client-side environments ranging from Web browsers without local storage capability to workstations with serial connectivity to a tamper-proof device, and also for point-to-multipoint transaction processes.
    Matched MeSH terms: Computer Security*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links