Displaying publications 81 - 100 of 374 in total

Abstract:
Sort:
  1. Arjmandi R, Hassan A, Haafiz MK, Zakaria Z, Islam MS
    Int J Biol Macromol, 2016 Jan;82:998-1010.
    PMID: 26592699 DOI: 10.1016/j.ijbiomac.2015.11.028
    Polylactic acid (PLA) nanocomposites reinforced with hybrid montmorillonite/cellulose nanowhiskers [MMT/CNW(SO4)] were prepared by solution casting. The CNW(SO4) nanofiller was first isolated from microcrystalline cellulose using acid hydrolysis treatment. PLA/MMT/CNW(SO4) hybrid nanocomposites were prepared by the addition of various amounts of CNW(SO4) [1-9 parts per hundred parts of polymer (phr)] into PLA/MMT nanocomposite at 5 phr MMT content, based on highest tensile strength values as reported previously. The biodegradability, thermal, tensile, morphological, water absorption and transparency properties of PLA/MMT/CNW(SO4) hybrid nanocomposites were investigated. The Biodegradability, thermal stability and crystallinity of hybrid nanocomposites increased compared to PLA/MMT nanocomposite and neat PLA. The highest tensile strength of hybrid nanocomposites was obtained by incorporating 1 phr CNW(SO4) [∼ 36 MPa]. Interestingly, the ductility of hybrid nanocomposites increased significantly by 87% at this formulation. The Young's modulus increased linearly with increasing CNW(SO4) content. This is due to the relatively good dispersion of nanofillers in the hybrid nanocomposites, as revealed by transmission electron microscopy. Fourier transform infrared spectroscopy indicated the formation of some polar interactions. In addition, water resistance of the hybrid nanocomposites improved and the visual transparency of neat PLA film did not affect by addition of CNW(SO4).
    Matched MeSH terms: Materials Testing
  2. Lee SY, Kamarul T
    Int J Biol Macromol, 2014 Mar;64:115-22.
    PMID: 24325858 DOI: 10.1016/j.ijbiomac.2013.11.039
    In this study, a chitosan co-polymer scaffold was prepared by mixing poly(vinyl alcohol) (PVA), NO, carboxymethyl chitosan (NOCC) and polyethylene glycol (PEG) solutions to obtain desirable properties for chondrocyte cultivation. Electron beam (e-beam) radiation was used to physically cross-link these polymers at different doses (30 kGy and 50 kGy). The co-polymers were then lyophilized to form macroporous three-dimensional (3-D) matrix. Scaffold morphology, porosity, swelling properties, biocompatibility, expression of glycosaminoglycan (GAG) and type II collagen following the seeding of primary chondrocytes were studied up to 28 days. The results demonstrate that irradiation of e-beam at 50 kGy increased scaffold porosity and pore sizes subsequently enhanced cell attachment and proliferation. Scanning electron microscopy and transmission electron microscopy revealed extensive interconnected microstructure of PVA-PEG-NOCC, demonstrated cellular activities on the scaffolds and their ability to maintain chondrocyte phenotype. In addition, the produced PVA-PEG-NOCC scaffolds showed superior swelling properties, and increased GAG and type II collagen secreted by the seeded chondrocytes. In conclusion, the results suggest that by adding NOCC and irradiation cross-linking at 50 kGy, the physical and biological properties of PVA-PEG blend can be further enhanced thereby making PVA-PEG-NOCC a potential scaffold for chondrocytes.
    Matched MeSH terms: Materials Testing
  3. Krishnasamy S, Thiagamani SMK, Muthu Kumar C, Nagarajan R, R M S, Siengchin S, et al.
    Int J Biol Macromol, 2019 Dec 01;141:1-13.
    PMID: 31472211 DOI: 10.1016/j.ijbiomac.2019.08.231
    Bio-composites are easy to manufacture and environmentally friendly, could reduce the overall cost and provide lightweight due to the low density of the natural fibers. In a bid to compete with the synthetic fiber reinforced composites, a single natural fiber composite may not be a good choice to obtain optimal properties. Hence, hybrid composites are produced by adding two or more natural fibers together to obtain improved properties, such as mechanical, physical, thermal, water absorption, acoustic and dynamic, among others. Regarding thermal stability, the composites showed a significant change by varying the individual fiber compositions, fiber surface treatments, addition of fillers and coupling agents. The glass transition temperature and melting point obtained from the thermomechanical analysis and differential scanning calorimetry are not the same values for several hybrid composites, since the volume variation was not always parallel with the enthalpy change. However, the difference between the temperature calculated from the thermomechanical analysis and differential scanning calorimetry was lower. Significantly, this critical reviewed study has a potential of guiding all composite designers, manufacturers and users on right selection of composite materials for thermal applications, such as engine components (covers), heat shields and brake ducts, among others.
    Matched MeSH terms: Materials Testing*
  4. Thiagamani SMK, Krishnasamy S, Muthukumar C, Tengsuthiwat J, Nagarajan R, Siengchin S, et al.
    Int J Biol Macromol, 2019 Nov 01;140:637-646.
    PMID: 31437507 DOI: 10.1016/j.ijbiomac.2019.08.166
    This work focuses on the fabrication of hybrid bio-composites using green epoxy as the matrix material, hemp (H) and sisal (S) fibre mats as the reinforcements. The hybrid composite with sisal/hemp fibres were fabricated by cost effective hand lay-up technique, followed by hot press with different stacking sequences. Static properties of the composites such as tensile, compressive, inter-laminar shear strengths (ILSS) and hardness were examined. The physical properties such as density, void content, water absorption and thickness swelling were also analyzed. The experimental results indicate that hybrid composites exhibited minor variation in tensile strength when the stacking sequence was altered. The hybrid composite with the intercalated arrangement (HSHS) exhibited the highest tensile modulus when compared with the other hybrid counterparts. Hybrid composites (SHHS and HSSH) offered 40% higher values of compressive strength than the other layering arrangements. HHHH sample exhibited the highest ILSS value of 4.08 MPa. Typical failure characteristics of the short beam test such as inter-laminar shear cracks in the transverse direction, micro-buckling and fibre rupture were also observed.
    Matched MeSH terms: Materials Testing/methods
  5. Ibrahim MIJ, Sapuan SM, Zainudin ES, Zuhri MYM
    Int J Biol Macromol, 2019 Oct 15;139:596-604.
    PMID: 31381916 DOI: 10.1016/j.ijbiomac.2019.08.015
    In this study, biodegradable composite films were prepared by using thermoplastic cornstarch matrix and corn husk fiber as a reinforcing filler. The composite films were manufactured via a casting technique using different concentrations of husk fiber (0-8%), and fructose as a plasticizer at a fixed amount of 25% for starch weight. The Physical, thermal, morphological, and tensile characteristics of composite films were investigated. The findings indicated that the incorporation of husk fiber, in general, enhanced the performance of the composite films. There was a noticeable reduction in the density and moisture content of the films, and soil burial assessment showed less resistance to biodegradation. The morphological images presented a consistent structure and excellent compatibility between matrix and reinforcement, which reflected on the improved tensile strength and young modulus as well as the crystallinity index. The thermal stability of composite films has also been enhanced, as evidenced by the increased onset decomposition temperature of the reinforced films compared to neat film. Fourier transform infrared analysis revealed increasing in intermolecular hydrogen bonding following fiber loading. The composite materials prepared using corn husk residues as reinforcement responded to community demand for agricultural and polymeric waste disposal and added more value to waste management.
    Matched MeSH terms: Materials Testing
  6. Xue Mei L, Mohammadi Nafchi A, Ghasemipour F, Mat Easa A, Jafarzadeh S, Al-Hassan AA
    Int J Biol Macromol, 2020 Dec 01;164:4603-4612.
    PMID: 32941902 DOI: 10.1016/j.ijbiomac.2020.09.082
    The development of intelligent packaging based on natural and biodegradable resources is getting more attention by researchers in recent years. The aim of this study was to develop and characterize a pH-sensitive films based on sago starch and incorporated with anthocyanin from torch ginger. The pH-sensitive films were fabricated by casting method with incorporation of different torch ginger extract (TGE) concentration. The surface morphology, physicochemical, barrier, and mechanical properties as well as the pH-sensitivity of films were investigated. The film with the highest concentration of TGE showed the lowest tensile strength (4.26 N/m2), toughness (2.54 MJ/m3), Young's modulus (73.96 MPa) and water vapour permeability (2.6 × 10-4 g·m/day·kPa·m2). However, its elongation at break (85.14%), moisture content (0.27%) and water solubility (37.92%) were the highest compared to other films. pH sensitivity analysis showed that the films containing TGE extract, changes in colour by changing the pH. The colour of films changed from pink to slightly green as the pH increased from pH 4 to 9. Thus, the developed pH-sensitive film with torch ginger extract has potential as intelligent packaging for detection of food freshness or spoilage to ensure their quality and safe consumption.
    Matched MeSH terms: Materials Testing
  7. Rezvanian M, Ng SF, Alavi T, Ahmad W
    Int J Biol Macromol, 2021 Feb 28;171:308-319.
    PMID: 33421467 DOI: 10.1016/j.ijbiomac.2020.12.221
    Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals were euthanized and the wounds tissue were harvested for analysis. The wound healing rate, hematology and histological analysis, hydroxyproline assay, and Vascular Endothelial Growth Factor A measurements were noted. The results revealed that the wound dressing healed the wounded area significantly (p 
    Matched MeSH terms: Materials Testing
  8. Rezvanian M, Ahmad N, Mohd Amin MC, Ng SF
    Int J Biol Macromol, 2017 Apr;97:131-140.
    PMID: 28064048 DOI: 10.1016/j.ijbiomac.2016.12.079
    Natural polymer-based hydrogel films have great potential for biomedical applications and are good candidates for wound dressings. In this study, we aimed to develop simvastatin-loaded crosslinked alginate-pectin hydrogel films by ionic crosslinking to improve the mechanical characteristics, wound fluid uptake and drug release behavior. Alginate-pectin hydrocolloid films were chemically crosslinked by immersing in different concentrations of CaCl2 (0.5-3% w/v) for 2-20min. The degree of crosslinking was influenced by both contact time and CaCl2 concentration. The optimized conditions for crosslinking were 0.5% and 1% (CaCl2) for 2min. The optimized hydrogel films were then characterized for their physical, mechanical, morphological, thermal, in vitro drug release, and cytocompatibility profiles. Crosslinking improved the mechanical profile and wound fluid uptake capacity of dressings. The hydrogel films were able to maintain their physical integrity during use, and the best results were obtained with the film in which the extent of crosslinking was low (0.5%). Thermal analysis confirmed that the crosslinking process enhanced the thermal stability of hydrogel films. Sustained, slow release of simvastatin was obtained from the crosslinked films and in vitro cytotoxicity assay demonstrated that the hydrogel films were non-toxic.
    Matched MeSH terms: Materials Testing
  9. Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M
    Int J Biol Macromol, 2017 Apr;97:190-200.
    PMID: 28082223 DOI: 10.1016/j.ijbiomac.2017.01.029
    Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites.
    Matched MeSH terms: Materials Testing
  10. Ghosal K, Das A, Das SK, Mahmood S, Ramadan MAM, Thomas S
    Int J Biol Macromol, 2019 Jun 01;130:645-654.
    PMID: 30797807 DOI: 10.1016/j.ijbiomac.2019.02.117
    This study aimed to develop and characterize the calcium alginate films loaded with diclofenac sodium and other hydrophilic polymers with different degrees of cross-linking obtained by external gelation process. To the formed films different physicochemical evaluation were performed which showed an initial character of the films. The films produced by this external gelation process were found thicker (0.031-0.038 mm) and stronger (51.9-52.9 MPa) but less elastic (2.3%) than those non-cross-linked films (0.029 mm; 39.7 MPa; 4.4%). The lower water vapor permeability (WVP) values of the films were obtained where maximum level of crosslinking occurs. Composite films can be cross-linked in presence of external crosslinking agent to improve the quality of the produced matrices for various uses. The characterization of the film was performed using Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR) analysis. The Scanning Electron Microscopy (SEM) study showed the morphology of treated composite films. The kinetic release studies showed a sustained release of the drug from the formulated films as it can be prolonged in composite film. The prepared biodegradable Ca-Alginate bio-composite film may be of clinical importance for its therapeutic benefit.
    Matched MeSH terms: Materials Testing
  11. Syafri E, Jamaluddin, Wahono S, Irwan A, Asrofi M, Sari NH, et al.
    Int J Biol Macromol, 2019 Sep 15;137:119-125.
    PMID: 31252021 DOI: 10.1016/j.ijbiomac.2019.06.174
    The cellulose microfibers (CMF) from water hyacinth (WH) fiber as a filler in sago starch (SS) biocomposites was investigated. The CMF was isolated by pulping, bleaching and acid hydrolysis methods. The addition of CMF in sago matrix was varied i.e. 0, 5, 10, 15 and 20 wt%. Biocomposites were made by using solution casting and glycerol as a plasticizer. The biocomposites were also determined by tensile test, FTIR, X-Ray, thermogravimetric, SEM, and soil burial tests. The results show that the SS15CMF sample has the highest tensile strength of 10.23 MPa than those other samples. Scanning Electron Microscope (SEM) images show that the strong interaction was formed between CMF WH and matrix. Fourier Transform Infra-red (FTIR) indicated that the functional group of biocomposites was a hydrophilic cluster. The addition of CMF WH in sago starch biocomposites lead to the moisture barrier, crystallinity, and thermal stability increased; it is due to the pure sago starch film was more rapidly degraded than its biocomposites.
    Matched MeSH terms: Materials Testing
  12. Ullah S, Zainol I, Idrus RH
    Int J Biol Macromol, 2017 Nov;104(Pt A):1020-1029.
    PMID: 28668615 DOI: 10.1016/j.ijbiomac.2017.06.080
    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds.
    Matched MeSH terms: Materials Testing
  13. Abdolmohammadi S, Siyamak S, Ibrahim NA, Yunus WM, Rahman MZ, Azizi S, et al.
    Int J Mol Sci, 2012;13(4):4508-22.
    PMID: 22605993 DOI: 10.3390/ijms13044508
    This study investigates the effects of calcium carbonate (CaCO(3)) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO(3) were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO(3) nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO(3). Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO(3). The thermal stability was best enhanced at 1 wt% of CaCO(3) nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO(3) nanocomposite. TEM micrograph displays good dispersion of CaCO(3) at lower nanoparticle loading within the matrix.
    Matched MeSH terms: Materials Testing
  14. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WM, Rahman MZ
    Int J Mol Sci, 2012;13(2):1327-46.
    PMID: 22408394 DOI: 10.3390/ijms13021327
    A new class of biocomposites based on oil palm empty fruit bunch fiber and poly(butylene adipate-co-terephthalate) (PBAT), which is a biodegradable aliphatic aromatic co-polyester, were prepared using melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 wt% and characterized. Chemical treatment of oil palm empty fruit bunch (EFB) fiber was successfully done by grafting succinic anhydride (SAH) onto the EFB fiber surface, and the modified fibers were obtained in two levels of grafting (low and high weight percentage gain, WPG) after 5 and 6 h of grafting. The FTIR characterization showed evidence of successful fiber esterification. The results showed that 40 wt% of fiber loading improved the tensile properties of the biocomposite. The effects of EFB fiber chemical treatments and various organic initiators content on mechanical and thermal properties and water absorption of PBAT/EFB 60/40 wt% biocomposites were also examined. The SAH-g-EFB fiber at low WPG in presence of 1 wt% of dicumyl peroxide (DCP) initiator was found to significantly enhance the tensile and flexural properties as well as water resistance of biocomposite (up to 24%) compared with those of untreated fiber reinforced composites. The thermal behavior of the composites was evaluated from thermogravimetric analysis (TGA)/differential thermogravimetric (DTG) thermograms. It was observed that, the chemical treatment has marginally improved the biocomposites' thermal stability in presence of 1 wt% of dicumyl peroxide at the low WPG level of grafting. The improved fiber-matrix surface enhancement in the chemically treated biocomposite was confirmed by SEM analysis of the tensile fractured specimens.
    Matched MeSH terms: Materials Testing*
  15. Ezhilarasu H, Ramalingam R, Dhand C, Lakshminarayanan R, Sadiq A, Gandhimathi C, et al.
    Int J Mol Sci, 2019 Oct 18;20(20).
    PMID: 31635374 DOI: 10.3390/ijms20205174
    Aloe vera (AV) and tetracycline hydrochloride (TCH) exhibit significant properties such as anti-inflammatory, antioxidant and anti-bacterial activities to facilitate skin tissue engineering. The present study aims to develop poly-ε-caprolactone (PCL)/ AV containing curcumin (CUR), and TCH loaded hybrid nanofibrous scaffolds to validate the synergistic effect on the fibroblast proliferation and antimicrobial activity against Gram-positive and Gram-negative bacteria for wound healing. PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH hybrid nanofibrous mats were fabricated using an electrospinning technique and were characterized for surface morphology, the successful incorporation of active compounds, hydrophilicity and the mechanical property of nanofibers. SEM revealed that there was a decrease in the fiber diameter (ranging from 360 to 770 nm) upon the addition of AV, CUR and TCH in PCL nanofibers, which were randomly oriented with bead free morphology. FTIR spectra of various electrospun samples confirmed the successful incorporation of AV, CUR and TCH into the PCL nanofibers. The fabricated nanofibrous scaffolds possessed mechanical properties within the range of human skin. The biocompatibility of electrospun nanofibrous scaffolds were evaluated on primary human dermal fibroblasts (hDF) by MTS assay, CMFDA, Sirius red and F-actin stainings. The results showed that the fabricated PCL/AV/CUR and PCL/AV/TCH nanofibrous scaffolds were non-toxic and had the potential for wound healing applications. The disc diffusion assay confirmed that the electrospun nanofibrous scaffolds possessed antibacterial activity and provided an effective wound dressing for skin tissue engineering.
    Matched MeSH terms: Materials Testing
  16. Isa T, Zakaria ZA, Rukayadi Y, Mohd Hezmee MN, Jaji AZ, Imam MU, et al.
    Int J Mol Sci, 2016;17(5).
    PMID: 27213349 DOI: 10.3390/ijms17050713
    The use of nanoparticle delivery systems to enhance intracellular penetration of antibiotics and their retention time is becoming popular. The challenge, however, is that the interaction of nanoparticles with biological systems at the cellular level must be established prior to biomedical applications. Ciprofloxacin-cockle shells-derived calcium carbonate (aragonite) nanoparticles (C-CSCCAN) were developed and characterized. Antibacterial activity was determined using a modified disc diffusion protocol on Salmonella Typhimurium (S. Typhimurium). Biocompatibilittes with macrophage were evaluated using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Bromo-2'-deoxyuridine (BrdU) assays. Transcriptional regulation of interleukin 1 beta (IL-1β) was determined using reverse transcriptase-polymerase chain reaction (RT-PCR). C-CSCCAN were spherical in shape, with particle sizes ranging from 11.93 to 22.12 nm. Encapsulation efficiency (EE) and loading content (LC) were 99.5% and 5.9%, respectively, with negative ζ potential. X-ray diffraction patterns revealed strong crystallizations and purity in the formulations. The mean diameter of inhibition zone was 18.6 ± 0.5 mm, which was better than ciprofloxacin alone (11.7 ± 0.9 mm). Study of biocompatability established the cytocompatability of the delivery system without upregulation of IL-1β. The results indicated that ciprofloxacin-nanoparticles enhanced the antibacterial efficacy of the antibiotic, and could act as a suitable delivery system against intracellular infections.
    Matched MeSH terms: Materials Testing*
  17. Ishaka A, Umar Imam M, Mahamud R, Zuki AB, Maznah I
    Int J Nanomedicine, 2014;9:2261-9.
    PMID: 24872689 DOI: 10.2147/IJN.S56999
    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56-94.52 nm), with optimum charge distribution (-55.8 to -45.12 mV), pH (6.79-6.92) and refractive index (1.50); these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times.
    Matched MeSH terms: Materials Testing
  18. Lim HN, Huang NM, Lim SS, Harrison I, Chia CH
    Int J Nanomedicine, 2011;6:1817-23.
    PMID: 21931479 DOI: 10.2147/IJN.S23392
    Three-dimensional assembly of graphene hydrogel is rapidly attracting the interest of researchers because of its wide range of applications in energy storage, electronics, electrochemistry, and waste water treatment. Information on the use of graphene hydrogel for biological purposes is lacking, so we conducted a preliminary study to determine the suitability of graphene hydrogel as a substrate for cell growth, which could potentially be used as building blocks for biomolecules and tissue engineering applications.
    Matched MeSH terms: Materials Testing
  19. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z
    Int J Nanomedicine, 2012;7:5745-56.
    PMID: 23166439 DOI: 10.2147/IJN.S35746
    Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe²⁺ to Fe³⁺ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure.
    Matched MeSH terms: Materials Testing
  20. Qi J, Zhang H, Wang Y, Mani MP, Jaganathan SK
    Int J Nanomedicine, 2018;13:2777-2788.
    PMID: 29785105 DOI: 10.2147/IJN.S151242
    Introduction: Currently, the design of extracellular matrix (ECM) with nanoscale properties in bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain properties such as being nontoxic, highly porous, and should not cause foreign body reactions.

    Materials and methods: In this study, the hybrid scaffold based on polyvinyl alcohol (PVA) blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites.

    Results: The prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA (1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs).

    Conclusion: The prepared nanocomposites exhibited better physico-chemical properties, sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable candidate in bone tissue engineering for repairing the bone defects.

    Matched MeSH terms: Materials Testing
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links