Displaying publications 81 - 85 of 85 in total

Abstract:
Sort:
  1. Ghaznavi-Rad E, Goering RV, Nor Shamsudin M, Weng PL, Sekawi Z, Tavakol M, et al.
    Eur J Clin Microbiol Infect Dis, 2011 Nov;30(11):1365-9.
    PMID: 21479532 DOI: 10.1007/s10096-011-1230-1
    The usefulness of mec-associated dru typing in the epidemiological analysis of methicillin-resistant Staphylococcus aureus (MRSA) isolated in Malaysia was investigated and compared with pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and spa and SCCmec typing. The isolates studied included all MRSA types in Malaysia. Multilocus sequence type ST188 and ST1 isolates were highly clonal by all typing methods. However, the dru typing of ST239 isolates produced the clearest discrimination between SCCmec IIIa and III isolates, yielding more subtypes than any other method. Evaluation of the discriminatory power for each method identified dru typing and PFGE as the most discriminatory, with Simpson's index of diversity (SID) values over 89%, including an isolate which was non-typeable by spa, but dru-typed as dt13j. The discriminatory ability of dru typing, especially with closely related MRSA ST239 strains (e.g., Brazilian and Hungarian), underscores its utility as a tool for the epidemiological investigation of MRSA.
    Matched MeSH terms: Multilocus Sequence Typing
  2. Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N
    Antimicrob Agents Chemother, 2014 Dec;58(12):7240-9.
    PMID: 25246402 DOI: 10.1128/AAC.03320-14
    In view of the epidemiological success of CTX-M-15-producing lineages of Escherichia coli and particularly of sequence type 131 (ST131), it is of significant interest to explore its prevalence in countries such as India and to determine if antibiotic resistance, virulence, metabolic potential, and/or the genetic architecture of the ST131 isolates differ from those of non-ST131 isolates. A collection of 126 E. coli isolates comprising 43 ST131 E. coli, 40 non-ST131 E. coli, and 43 fecal E. coli isolates collected from a tertiary care hospital in India was analyzed. These isolates were subjected to enterobacterial repetitive intergenic consensus (ERIC)-based fingerprinting, O typing, phylogenetic grouping, antibiotic sensitivity testing, and virulence and antimicrobial resistance gene (VAG) detection. Representative isolates from this collection were also analyzed by multilocus sequence typing (MLST), conjugation, metabolic profiling, biofilm production assay, and zebra fish lethality assay. All of the 43 ST131 E. coli isolates were exclusively associated with phylogenetic group B2 (100%), while most of the clinical non-ST131 and stool non-ST131 E. coli isolates were affiliated with the B2 (38%) and A (58%) phylogenetic groups, respectively. Significantly greater proportions of ST131 isolates (58%) than non-ST131 isolates (clinical and stool E. coli isolates, 5% each) were technically identified to be extraintestinal pathogenic E. coli (ExPEC). The clinical ST131, clinical non-ST131, and stool non-ST131 E. coli isolates exhibited high rates of multidrug resistance (95%, 91%, and 91%, respectively), extended-spectrum-β-lactamase (ESBL) production (86%, 83%, and 91%, respectively), and metallo-β-lactamase (MBL) production (28%, 33%, and 0%, respectively). CTX-M-15 was strongly linked with ESBL production in ST131 isolates (93%), whereas CTX-M-15 plus TEM were present in clinical and stool non-ST131 E. coli isolates. Using MLST, we confirmed the presence of two NDM-1-positive ST131 E. coli isolates. The aggregate bioscores (metabolite utilization) for ST131, clinical non-ST131, and stool non-ST131 E. coli isolates were 53%, 52%, and 49%, respectively. The ST131 isolates were moderate biofilm producers and were more highly virulent in zebra fish than non-ST131 isolates. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, and this was subsequently followed by the genetic similarity of clinical non-ST131 and stool non-ST131 E. coli strains. In conclusion, our data provide novel insights into aspects of the fitness advantage of E. coli lineage ST131 and suggest that a number of factors are likely involved in the worldwide dissemination of and infections due to ST131 E. coli isolates.
    Matched MeSH terms: Multilocus Sequence Typing
  3. Biglari S, Hanafiah A, Mohd Puzi S, Ramli R, Rahman M, Lopes BS
    Microb Drug Resist, 2017 Jul;23(5):545-555.
    PMID: 27854165 DOI: 10.1089/mdr.2016.0130
    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-blaOXA-23and ISAba1-blaADCand had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the blaOXA-51-likegenes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.
    Matched MeSH terms: Multilocus Sequence Typing
  4. Ghasemzadeh-Moghaddam H, van Wamel W, van Belkum A, Hamat RA, Tavakol M, Neela VK
    Eur J Clin Microbiol Infect Dis, 2018 Feb;37(2):255-263.
    PMID: 29103153 DOI: 10.1007/s10096-017-3124-3
    The humoral immune responses against 46 different staphylococcal antigens in 27 bacteremia patients infected by clonally related methicillin-resistant Staphylococcus aureus (MRSA) strains of a single sequence type (ST) 239 were investigated. A group of non-infected patients (n = 31) hospitalized for different reasons served as controls. All strains were confirmed as ST 239 by S. aureus and mecA-specific PCR, spa, and multi-locus sequence typing (MLST). In each bacteremia patient, a unique pattern of S. aureus antigen-specific immune responses after infection was observed. Antibody levels among bacteremia patients were significantly higher than controls for HlgB (P = 0.001), LukD (P = 0.009), LukF (P = 0.0001), SEA (P = 0.0001), SEB (P = 0.011), SEC (P = 0.010), SEQ (P = 0.049), IsaA (P = 0.043), IsdA (P = 0.038), IsdH (P = 0.01), SdrD (P = 0.001), SdrE (P = 0.046), EsxA (P = 0.0001), and SA0104 (P = 0.0001). On the other hand, the antibody levels were significantly higher among controls for SSL3 (P = 0.009), SSL9 (P = 0.002), and SSL10 (P = 0.007) when the IgG level on the day of infection was compared with that measured on the day of admission. Diversity was observed in the immune response against the antigens. However, a set of antigens (IsaA, IsdA, IsdH, SdrD, and HlgB) triggered a similar type of immune response in different individuals. We suggest that these antigens could be considered when developing a multi-component (passive) vaccine. SEA and/or its specific antibodies seem to play a critical role during ST239 MRSA bacteremia and SEA-targeted therapy may be a strategy to be considered.
    Matched MeSH terms: Multilocus Sequence Typing
  5. Philip N, Bahtiar Affendy N, Ramli SNA, Arif M, Raja P, Nagandran E, et al.
    PLoS Negl Trop Dis, 2020 Mar;14(3):e0008197.
    PMID: 32203511 DOI: 10.1371/journal.pntd.0008197
    BACKGROUND: Leptospirosis, commonly known as rat-urine disease, is a global but endemic zoonotic disease in the tropics. Despite the historical report of leptospirosis in Malaysia, the information on human-infecting species is limited. Determining the circulating species is important to understand its epidemiology, thereby to strategize appropriate control measures through public health interventions, diagnostics, therapeutics and vaccine development.

    METHODOLOGY/PRINCIPLE FINDINGS: We investigated the human-infecting Leptospira species in blood and serum samples collected from clinically suspected leptospirosis patients admitted to three tertiary care hospitals in Malaysia. From a total of 165 patients, 92 (56%) were confirmed cases of leptospirosis through Microscopic Agglutination Test (MAT) (n = 43; 47%), Polymerase Chain Reaction (PCR) (n = 63; 68%) or both MAT and PCR (n = 14; 15%). The infecting Leptospira spp., determined by partial 16S rDNA (rrs) gene sequencing revealed two pathogenic species namely Leptospira interrogans (n = 44, 70%) and Leptospira kirschneri (n = 17, 27%) and one intermediate species Leptospira wolffii (n = 2, 3%). Multilocus sequence typing (MLST) identified an isolate of L. interrogans as a novel sequence type (ST 265), suggesting that this human-infecting strain has a unique genetic profile different from similar species isolated from rodents so far.

    CONCLUSIONS/SIGNIFICANCE: Leptospira interrogans and Leptospira kirschneri were identified as the dominant Leptospira species causing human leptospirosis in Central Malaysia. The existence of novel clinically important ST 265 (infecting human), that is different from rodent L. interrogans strains cautions reservoir(s) of these Leptospira lineages are yet to be identified.

    Matched MeSH terms: Multilocus Sequence Typing
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links