Displaying publications 101 - 104 of 104 in total

Abstract:
Sort:
  1. Prakash L, Middha SK, Mohanty SK, Swamy MK
    3 Biotech, 2016 Dec;6(2):171.
    PMID: 28330243 DOI: 10.1007/s13205-016-0490-y
    An in vitro protocol has been established for clonal propagation of Nothapodytes nimmoniana which is an important source of Camptothecin (CPT). Elite source was identified based on the chemical potency to accumulate the optimum level of CPT. Different types and concentrations of plant growth regulators were used to study their effect on inducing multiple shoots from the explants regenerated from embryos of N. nimmoniana. Of these, a combination of N6-benzyladenine (0.2 mg L(-1)) and Indole-3-butyric acid (IBA) (0.1 mg L(-1)) proved optimum for differentiating multiple shoots in 90.6 % of the cultures with an average of 10.24 shoots per explant obtained within 8 weeks of inoculation. Nearly, 92 % of the excised in vitro shoots rooted on half strength Murashige and Skoog (MS) medium containing 0.05 % activated charcoal, supplemented with 1-naphthaleneacetic acid and IBA at 0.1 mg L(-1) each. The micropropagated plants were evaluated for their genetic fidelity by employing inter simple sequence repeats (ISSR) markers. Ten individuals, randomly chosen from a population of 145 regenerants, were compared with the donor plant. The regenerated plants were also evaluated for their chemical potency using high-performance liquid chromatography (HPLC) analysis of CPT content. The true-to-type nature of the micropropagated plants was confirmed based on their monomorphic banding profiles with that of the mother plants using ISSR markers. Besides, HPLC evaluation of the CPT content confirmed the existence of chemical uniformity among the regenerated plants and the elite mother plant.
  2. Tang WW, Foo SC
    3 Biotech, 2024 May;14(5):130.
    PMID: 38605865 DOI: 10.1007/s13205-024-03977-w
    Microalgae are photoautotrophic organisms in freshwater systems known to uptake and bioremediate arsenic, a heavy metal. In this study, we compared the growth and arsenic uptake of two microalgae strains, Nostoc and Chlorella, to determine their suitability for arsenic bioremediation. As compared to the control, our results showed that treatment with As (III) enhanced the Nostoc growth by approximately 15% when grown in the absence of phosphate. The highest bioconcentration factor of Nostoc at this treatment was 1463.6, whereas 0.10 mg L-1 As (V) treatment improved the Chlorella growth by 25%, in the presence of phosphate. However, arsenic uptake reduced from 175.7 to 32.3 throughout the cultivation period for Chlorella. This suggests that Nostoc has an upper advantage in the bioremediation of arsenic as compared to the Chlorella strain. To gain insights into the potential of Nostoc in arsenic bioremediation, we further conducted SEM analysis on the vegetative cell surface. The SEM results showed that As (III) disrupted the Nostoc vegetative cell surface and structure. Further to this, pathway analysis and polymerase chain reaction (PCR) were conducted to identify the potential arsenic pathway regulated by Nostoc. The primary As (III)-related pathways elucidated include the arsA transporter and arsD complex that require ATP and As (III) methylation to S-adenosylmethionine. The phosphate deficiency condition resulting in the inability to generate ATP caused As (III) could not be excreted from the Nostoc cells, potentially contributing to the high arsenic concentration accumulated under phosphate-depleted conditions. These insights contribute to understanding the efficacy of microalgae strains in freshwater arsenic bioremediation.
  3. Suhaidi NA, Halmi MIE, Rashidi AA, Anuar MFM, Mahmud K, Kusnin N, et al.
    3 Biotech, 2023 May;13(5):121.
    PMID: 37033387 DOI: 10.1007/s13205-023-03532-z
    A very sensitive and selective colorimetric biosensor for the measurement of mercury ion (Hg2+) in environmental samples has been developed using functionalized gold nanoparticles with bromelain enzyme (brn-AuNPs). This work has shown that Hg2+ measurement based on spectrophotometer and digital image analysis is a very innovative and successful method for providing an effective preliminary system and has promise for the future of water quality biomonitoring. Response Surface Methodology (RSM), a Box-Behnken design-based technique, was used to identify the optimum levels of functionalization of bromelain to AuNPs. The created model's validity was confirmed, and statistical analysis revealed that the ideal functionalize conditions were 1 mM of AuNPs, functionalize with 0.59 mM bromelain concentration on 14 ℃ temperature and 72 h incubation time. The lowest colorimetric detection concentration (LOD) of brn-AuNPs of Hg2+ was 0.0092 ppm and 0.011 ppm for spectrophotometer and digital image analysis. As shown, digital image analysis had advantages based on the LOD result comparable to UV-VIS spectrophotometer. The practical application of the brn-AuNPs sensing was proven with mercury determination in water samples. The present study developed a robust sensor, which successfully implemented in a compact portable sensor kit, turning this sensor into a very potent tool for the development water quality biomonitoring system of Hg2+ application.
  4. Rahman NNA, Sharif FM, Kamarudin NHA, Ali MSM, Aris SNAM, Jonet MA, et al.
    3 Biotech, 2023 May;13(5):128.
    PMID: 37064003 DOI: 10.1007/s13205-023-03534-x
    GDSL esterase is designated as a member of Family II of lipolytic enzymes known to catalyse the synthesis and hydrolysis of ester bonds. The enzyme possesses a highly conserved motif Ser-Gly-Asn-His in the four conserved blocks I, II, III and V respectively. The enzyme characteristics, such as region-, chemo-, and enantioselectivity, help in resolving the racemic mixture of single-isomer chiral drugs. Recently, crystal structure of GDSL esterase from Photobacterium J15 has been reported (PDB ID: 5XTU) but not in complex with substrate. Therefore, GDSL in complex with substrate could provide insights into the binding mode of substrate towards inactive form of GDSL esterase (S12A) and identify the hot spot residues for the designing of a better binding pocket. Insight into molecular mechanisms is limited due to the lack of crystal structure of GDSL esterase-substrate complex. In this paper, the crystallization of mutant GDSL esterase (S12A) (PDB ID: 8HWO) and its complex with butyric acid (PDB ID: 8HWP) are reported. The optimized structure would be vital in determining hot spot residue for GDSL esterase. This preliminary study provides an understanding of the interactions between enzymes and hydrolysed p-nitro-phenyl butyrate. The information could guide in the rational design of GDSL esterase in overcoming the medical limitations associated with racemic mixture.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links