Displaying publications 101 - 114 of 114 in total

Abstract:
Sort:
  1. Chew EK, Lee KY, Lau EV
    J Colloid Interface Sci, 2017 Nov 15;506:452-459.
    PMID: 28755640 DOI: 10.1016/j.jcis.2017.07.078
    HYPOTHESIS: The effects of varying carbon chain lengths (CCLs) and concentrations of aqueous solutions of imidazolium based ionic liquids on bubble particle attachment (BPA) will provide a better understanding in catering for the varying degrees of surface activities in the application of the flotation technology. The general trends of this study should also be applicable to homologous series of other cationic surfactants and ionic liquids.

    EXPERIMENTS: Zeta potentials of small air bubbles and bunker oil drops dispersed in aqueous solutions of n-methylimidazolium chloride ionic liquids (n=0, 2, 3, 6, 8, 10, 12) of concentrations ranging from 1000PPM to 8000PPM, as were interfacial tensions of these solutions with bunker oil (180cst) and contact angles made by air bubbles at interfaces between these solutions and thin layers of bunker oil on flat solid surfaces were investigated. Finally, interparticle forces analysis using the Derjaguin-Landau, Verwey-Overbeek (DLVO) theory is also included.

    FINDINGS: Analysis using the DLVO theory showed attractive forces between the oil particles and micro-bubbles are significantly more prevalent in short CCLs solutions of imidazolium-based ILs in low concentrations, namely [C0mim][Cl] and [C2mim][Cl] at a maximum zeta potential difference of 75.3mV. The results from CA measurements follows similarly whereby low concentrations of ILs with short CCLs were in favor for the bubble-particle attachment process with angles ranging between 93.95° for [C0mim][Cl] and 97.28° for [C2mim][Cl]. IFT which is important in reducing coalescence for the preferential BPA process to occur in flotation decreases with an increase of CCL and concentration of IL.

  2. Mohamed A, Ardyani T, Abu Bakar S, Sagisaka M, Umetsu Y, Hamon JJ, et al.
    J Colloid Interface Sci, 2018 Apr 15;516:34-47.
    PMID: 29360058 DOI: 10.1016/j.jcis.2018.01.041
    HYPOTHESIS: Graphene nanoplatelets (GNPs) can be dispersed in natural rubber matrices using surfactants. The stability and properties of these composites can be optimized by the choice of surfactants employed as stabilizers. Surfactants can be designed and synthesized to have enhanced compatibility with GNPs as compared to commercially available common surfactants. Including aromatic groups in the hydrophobic chain termini improves graphene compatibility of surfactants, which is expected to increase with the number of aromatic moieties per surfactant molecule. Hence, it is of interest to study the relationship between molecular structure, dispersion stability and electrical conductivity enhancement for single-, double-, and triple-chain anionic graphene-compatible surfactants.

    EXPERIMENTS: Graphene-philic surfactants, bearing two and three chains phenylated at their chain termini, were synthesized and characterized by proton nuclear magnetic resonance (1H NMR) spectroscopy. These were used to formulate and stabilize dispersion of GNPs in natural rubber latex matrices, and the properties of systems comprising the new phenyl-surfactants were compared with commercially available surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). Raman spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM) were used to study structural properties of the materials. Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between surfactant architecture and nanocomposite properties. Small-angle neutron scattering (SANS) was used to study self-assembly structure of surfactants.

    FINDINGS: Of these different surfactants, the tri-chain aromatic surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly graphene-compatible (nanocomposite electrical conductivity = 2.22 × 10-5 S cm-1), demonstrating enhanced electrical conductivity over nine orders of magnitude higher than neat natural rubber-latex matrix (1.51 × 10-14 S cm-1). Varying the number of aromatic moieties in the surfactants appears to cause significant differences to the final properties of the nanocomposites.

  3. Jeyakumar J, Seenivasan M, Wu YS, Wu SH, Chang JK, Jose R, et al.
    J Colloid Interface Sci, 2023 Jun;639:145-159.
    PMID: 36804788 DOI: 10.1016/j.jcis.2023.02.064
    Nickel-rich (Ni > 90 %) cathodes are regarded as one of the most attractive because of their high energy density, despite their poor stability and cycle life. To improve their performance, in this study we synthesized a double concentration-gradient layered Li[Ni0.90Co0.04Mn0.03Al0.03]O2 oxide (CG-NCMA) using a continuous co-precipitation Taylor-Couette cylindrical reactor (TCCR) with a Ni-rich-core, an Mn-rich surface, and Al on top. The concentration-gradient morphology was confirmed through cross-sectional EDX line scanning. The as-synthesized sample exhibited excellent electrochemical performance at high rates (5C/10C), as well as cyclability (91.5 % after 100 cycles and 70.3 % after 500 cycles at 1C), superior to that (83.4 % and 47.6 %) of its non-concentration-gradient counterpart (UC-NCMA). The Mn-rich surface and presence of Al helped the material stay structurally robust, even after 500 cycles, while also suppressing side reactions between the electrode and electrolyte, resulting in better overall electrochemical performance. These enhancements in performance were studied using TEM, SEM, in-situ-XRD, XPS, CV, EIS and post-mortem analyses. This synthetic method enables the highly scalable production of CG-NCMA samples with two concentration-gradient structures for practical applications in Li-ion batteries.
  4. Gasim MF, Veksha A, Lisak G, Low SC, Hamidon TS, Hussin MH, et al.
    J Colloid Interface Sci, 2023 Mar 15;634:586-600.
    PMID: 36549207 DOI: 10.1016/j.jcis.2022.12.072
    Herein, five N, S-co-doped carbocatalysts were prepared from different carbonaceous precursors, namely sawdust (SD), biochar (BC), carbon-nanotubes (CNTs), graphite (GP), and graphene oxide (GO) and compared. Generally, as the graphitization degree increased, the extent of N and S doping decreased, graphitic N configuration is preferred, and S configuration is unaltered. As peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) removal, the catalytic performance was in order: NS-CNTs (0.037 min-1) > NS-BC (0.032 min-1) > NS-rGO (0.024 min-1) > NS-SD (0.010 min-1) > NS-GP (0.006 min-1), with the carbonaceous properties, rather than the heteroatoms content and textural properties, being the major factor affecting the catalytic performance. NS-CNTs was found to have the supreme catalytic activity due to its remarkable conductivity (3.38 S m-1) and defective sites (ID/IG = 1.28) with high anti-interference effect against organic and inorganic matter and varying water matrixes. The PMS activation pathway was dominated by singlet oxygen (1O2) generation and electron transfer regime between CIP and PMS activated complexes. The CIP degradation intermediates were identified, and a degradation pathway is proposed. Overall, this study provides a better understanding of the importance of selecting a suitable carbonaceous platform for heteroatoms doping to produce superior PMS activator for antibiotics decontamination.
  5. Doan Trang T, Lee J, Oh WD, Kwon E, Wang H, Fai Tsang Y, et al.
    J Colloid Interface Sci, 2023 Dec 15;652(Pt A):1028-1042.
    PMID: 37639925 DOI: 10.1016/j.jcis.2023.08.091
    While transition metals are useful for activating monopersulfate (MPS) to degrade contaminants, bimetallic alloys exhibit stronger catalytic activities owing to several favorable effects. Therefore, even though Co is an efficient metal for MPS activation, CoFe alloys are even more promising heterogeneous catalysts for MPS activation. Immobilization/embedment of CoFe alloy nanoparticles (NPs) onto hetero-atom-doped carbon matrices appears as a practical strategy for evenly dispersing CoFe NPs and enhancing catalytic activities via interfacial synergies between CoFe and carbon. Herein, N-doped carbon-embedded CoFe alloy (NCCF) is fabricated here to exhibit a unique hollow-engineered nanostructure and the composition of CoFe alloy by using Co-ZIF as a precursor after the facile etching and Fe doping. The Fe dopant embeds CoFe alloy NPs into the hollow-structured N-doped carbon substrate, enabling NCCF to possess the higher mesoscale porosity, active N species as well as more superior electrochemical properties than its analogue without Fe dopants, carbon matrix-supported cobalt (NCCo). Thus, NCCF exhibits a considerably larger activity than NCCo and the benchmark catalyst, Co3O4 NP, for MPS activation to degrade an environmental hormone, dihydroxydiphenyl ketone (DHPK). Besides, NCCF + MPS shows an even lower activation energy for DHPK degradation than literatures, and retains its high efficiency for eliminating DHPK in different water media. DHPK degradation pathway and ecotoxicity assessment are unraveled based on the insights from the computational chemistry, demonstrating that DHPK degradation by NCCF + MPS did not result in the formation of toxic and highly toxic by-products. These features make NCCF a promising heterogeneous catalyst for MPS activation to degrade DHPK.
  6. Chen JH, Choo YSL, Wang XH, Liu YJ, Yue XB, Gao XL, et al.
    J Colloid Interface Sci, 2023 Apr 06;643:62-72.
    PMID: 37044014 DOI: 10.1016/j.jcis.2023.04.011
    Anion exchange membrane fuel cells (AEMFCs) have emerged as a promising alternative to proton exchange membrane fuel cells (PEMFCs) due to their adaptability to low-cost stack components and non-noble-metals catalysts. However, the poor alkaline resistance and low OH- conductivity of anion exchange membranes (AEMs) have impeded the large-scale implementation of AEMFCs. Herein, the preparation of a new type of AEMs with crown ether macrocycles in their main chains via a one-pot superacid catalyzed reaction was reported. The study aimed to examine the influence of crown ether cavity size on the phase separation structure, ionic conductivity and alkali resistance of anion exchange membranes. Attributed to the self-assembly of crown ethers, the poly (crown ether) (PCE) AEMs with dibenzo-18-crown-6-ether (QAPCE-18-6) exhibit an obvious phase separated structure and a maximum OH- conductivity of 122.5 mS cm-1 at 80 °C (ionic exchange capacity is 1.51 meq g-1). QAPCE-18-6 shows a good alkali resistance with the OH- conductivity retention of 94.5% albeit being treated in a harsh alkali condition. Moreover, the hydrogen/oxygen single cell equipped with QAPCE-18-6 can achieve a peak power density (PPD) of 574 mW cm-2 at a current density of 1.39 A cm-2.
  7. Xiong X, Wong NH, Ernawati L, Sunarso J, Zhang X, Jin Y, et al.
    J Colloid Interface Sci, 2023 Aug 15;644:533-545.
    PMID: 37012113 DOI: 10.1016/j.jcis.2023.03.180
    Metal-organic polymers (MOPs) can enhance the photoelectrochemical (PEC) water oxidation performance of BiVO4 photoanodes, but their PEC mechanisms have yet to be comprehended. In this work, we constructed an active and stable composite photoelectrode by overlaying a uniform MOP on the BiVO4 surface using Fe2+ as the metal ions and 2,5-dihydroxyterephthalic acid (DHTA) as ligand. Such modification on the BiVO4 surface yielded a core-shell structure that could effectively enhance the PEC water oxidation activity of the BiVO4 photoanode. Our intensity-modulated photocurrent spectroscopy analysis revealed that the MOP overlayer could concurrently reduce the surface charge recombination rate constant (ksr) and enhance the charge transfer rate constant (ktr), thus accelerating water oxidation activity. These phenomena can be ascribed to the passivation of the surface that inhibits the recombination of the charge carrier and the MOP catalytic layer that improves the hole transfer. Our rate law analysis also demonstrated that the MOP coverage shifted the reaction order of the BiVO4 photoanode from the third-order to the first-order, resulting in a more favorable rate-determining step where only one hole accumulation is required to overcome water oxidation. This work provides new insights into the reaction mechanism of MOP-modified semiconductor photoanodes.
  8. Priyadharsini R, Manoharan C, Bououdina M, Sagadevan S, Venkateshwarlu M, Asath Bahadur S
    J Colloid Interface Sci, 2024 Jan;653(Pt A):917-929.
    PMID: 37774655 DOI: 10.1016/j.jcis.2023.09.113
    Nickel-substituted copper ferrite nanoparticles (NP) (Cu1-xNixFe2O4) were prepared using a cost-effective hydrothermal method. X-ray diffraction (XRD) pattern revealed a single-phase cubic spinel structure. The increase in lattice parameters and decrease in crystallite size are associated with the replacement of Cu ions by Ni ions in the host lattice of copper ferrite. The optimized Cu0.95Ni0.05Fe2O4 composition was subsequently annealed at 750 °C and 850 °C for further studies. Fourier transform infrared (FT-IR) analysis shows the existence of two promising fundamental adsorption peaks at 465 and 582 cm-1, related to the metal ion stretching vibrations at the tetrahedral (A) and octahedral (B) sites, respectively. The local disorder at both the A and B sublattices upon the incorporation of Ni was observed from the Raman analysis. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) images shows the formation of agglomerates composed of nano-sized spherical particles. A high Barrett-Joyner-Halenda (BJH) surface area was achieved 17.25 m2/g with a particle stability of -11.1 mV obtained by the zeta potential. Both the dielectric loss and dielectric constant are decreased, whereas the AC conductivity gets increased with increasing frequency. The magnetization-field hysteresis curves exhibited ferromagnetic behavior with a pseudo-single domain, and the cyclic voltammetry study revealed a pseudocapacitive trend. This study highlights the importance of Ni substitution to control the physicochemical properties of spinel-phase CuFe2O4 for diverse applications, such as energy storage and lithium-ion batteries.
  9. Yavrukova VI, Danov KD, Slavova TG, Stanimirova RD, Wei Ung Y, Tong Kim Suan A, et al.
    J Colloid Interface Sci, 2024 Jan 22;660:896-906.
    PMID: 38280282 DOI: 10.1016/j.jcis.2024.01.127
    HYPOTHESIS: Methyl ester sulfonates (MES) show limited water solubility at lower temperatures (Krafft point). One way to increase their solubility below their Krafft points is to incorporate them in anionic surfactant micelles. The electrostatic interactions between the ionic surfactant molecules and charged micelles play an important role for the degree of MES solubility.

    EXPERIMENTS: The solubility and electrolytic conductivity for binary and ternary surfactant mixtures of MES with anionic sodium alpha olefin sulfonate (AOS) and sodium lauryl ether sulfate with two ethylene oxide groups (SLES-2EO) at 5 °C during long-term storage were measured. Phase diagrams were established; a general phase separation theoretical model for their explanation was developed and checked experimentally.

    FINDINGS: The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general phase separation model for ionic surfactant mixtures is convenient for construction of such complex phase diagrams and provides information on the concentrations of all components of the complex solution and on the micellar electrostatic potential. The obtained maximal MES mole fraction of transparent micellar solutions could be of interest to increase the range of applicability of MES-surfactants.

  10. Wu XW, Karuppiah C, Wu YS, Zhang BR, Hsu LF, Shih JY, et al.
    J Colloid Interface Sci, 2024 Mar 15;658:699-713.
    PMID: 38141392 DOI: 10.1016/j.jcis.2023.12.098
    Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm-1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm-1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g-1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs).
  11. Tan XQ, Zhang P, Chen B, Mohamed AR, Ong WJ
    J Colloid Interface Sci, 2024 Feb 09;662:870-882.
    PMID: 38382371 DOI: 10.1016/j.jcis.2024.02.027
    The extensive examination of hexagonal molybdenum carbide (β-Mo2C) as a non-noble cocatalyst in the realm of photocatalytic H2 evolution is predominantly motivated by its exceptional capacity to adsorb H+ ions akin to Pt and its advantageous conductivity characteristics. However, the H2 evolution rate of photocatalysts modified with β-Mo2C is limited as a result of their comparatively low ability to release H through desorption. Therefore, a facile method was employed to synthesize carbon intercalated dual phase molybdenum carbide (MC@C) quantum dots (ca. 3.13 nm) containing both α-MoC and β-Mo2C decorated on g-C3N4 (gCN). The synthesis process involved a simple and efficient combination of sonication-assisted self-assembly and calcination techniques. 3-MC@C/gCN exhibited the highest efficiency in generating H2, with a rate of 4078 µmol g-1h-1 under 4 h simulated sunlight irradiation, which is 13 times higher than pristine gCN. Furthermore, from the cycle test, 3-MC@C/gCN showcased exceptional photochemical stability of 65 h, as it maintained a H2 evolution rate of 40 mmol g-1h-1. The heightened level of activity observed in the 3-MC@C/gCN system can be ascribed to the synergistic effects of MoC-Mo2C that arise due to the existence of a carbon layer. The presence of a carbon layer enhanced the transmission of photoinduced electrons, while the MoC-Mo2C@C composite served as active sites, thereby facilitating the H2 production reaction of gCN. The present study introduces a potentially paradigm-shifting concept pertaining to the exploration of novel Mo-based cocatalysts with the aim of augmenting the efficacy of photocatalytic H2 production.
  12. Hendri YB, Kuo LY, Seenivasan M, Wu YS, Wu SH, Chang JK, et al.
    J Colloid Interface Sci, 2024 May;661:289-306.
    PMID: 38301467 DOI: 10.1016/j.jcis.2024.01.094
    A novel scalable Taylor-Couette reactor (TCR) synthesis method was employed to prepare Ta-modified LiNi0.92Co0.04Mn0.04O2 (T-NCM92) with different Ta contents. Through experiments and density functional theory (DFT) calculations, the phase and microstructure of Ta-modified NCM92 were analyzed, showing that Ta provides a bifunctional (doping and coating at one time) effect on LiNi0.92Co0.04Mn0.04O2 cathode material through a one-step synthesis process via a controlling suitable amount of Ta and Li-salt. Ta doping allows the tailoring of the microstructure, orientation, and morphology of the primary NCM92 particles, resulting in a needle-like shape with fine structures that considerably enhance Li+ ion diffusion and electrochemical charge/discharge stability. The Ta-based surface-coating layer effectively prevented microcrack formation and inhibited electrolyte decomposition and surface-side reactions during cycling, thereby significantly improving the electrochemical performance and long-term cycling stability of NCM92 cathodes. Our as-prepared NCM92 modified with 0.2 mol% Ta (i.e., T2-NCM92) exhibits outstanding cyclability, retaining 84.5 % capacity at 4.3 V, 78.3 % at 4.5 V, and 67.6 % at 45 ℃ after 200 cycles at 1C. Even under high-rate conditions (10C), T2-NCM92 demonstrated a remarkable capacity retention of 66.9 % after 100 cycles, with an initial discharge capacity of 157.6 mAh g-1. Thus, the Ta modification of Ni-rich NCM92 materials is a promising option for optimizing NCM cathode materials and enabling their use in real-world electric vehicle (EV) applications.
  13. Seenivasan M, Yang CC, Wu SH, Chang JK, Jose R
    J Colloid Interface Sci, 2024 May;661:1070-1081.
    PMID: 38368230 DOI: 10.1016/j.jcis.2024.02.040
    The growing use of EVs and society's energy needs require safe, affordable, durable, and eco-friendly high-energy lithium-ion batteries (LIBs). To this end, we synthesized and investigated the removal of Co from Al-doped Ni-rich cathode materials, specifically LiNi0.9Co0.1Al0.0O2 (NCA-0), LiNi0.9Mn0.1Al0.0O2 (NMA-0), LiNi0.9Mn0.07Al0.03O2 (NMA-3), intending to enhance LIB performance and reduce the reliance on cobalt, a costly and scarce resource. Our study primarily focuses on how the removal of Co affects the material characteristics of Ni-rich cathode material and further introduces aluminum into the cathode composition to study its impacts on electrochemical properties and overall performance. Among the synthesized samples, we discovered that the NMA-3 sample, modified with 3 mol% of Al, exhibited superior battery performance, demonstrating the effectiveness of aluminum in promoting cathode stability. Furthermore, the Al-modified cathode showed promising cycle life under normal and high-temperature conditions. Our NMA-3 demonstrated remarkable capacity retention of ∼ 88 % at 25 °C and ∼ 81 % at 45 °C after 200 cycles at 1C, within a voltage range of 2.8-4.3 V, closely matching the performances of conventional NCM and NCA cathodes. Without cobalt, the cathodes exhibited increased cation disorder leading to inferior rate capabilities at high C-rates. In-situ transmission XRD analysis revealed that the introduction of Al has reduced the phase change and provided much-needed stability to the overall structure of the Co-free NMA-3. Altogether, the findings suggest that our aluminum-modified NMA-3 sample offers a promising approach to developing Co-free, Ni-rich cathodes, effectively paving the way toward sustainable, high-energy-density LIBs.
  14. Gerard O, Ramesh S, Ramesh K, Numan A, Norhaffis Mustafa M, Khalid M, et al.
    J Colloid Interface Sci, 2024 Apr 16;667:585-596.
    PMID: 38657542 DOI: 10.1016/j.jcis.2024.04.101
    Binary metal phosphate electrodes have been widely studied for energy storage applications due to the synergistic effects of two different transition elements that able to provide better conductivity and stability. Herein, the battery-type binder-free nickel-manganese phosphate (NiMn-phosphate) electrodes were fabricated with different Ni:Mn precursor ratios via microwave-assisted hydrothermal technique for 5 min at 90 °C. Overall, NiMn3P electrode (Ni:Mn = 1:3) showed an outstanding electrochemical performance, displaying the highest specific (areal) capacity at 3 A/g of 1262.4 C/g (0.44 C/cm2), and the smallest charge transfer resistance of 108.8 Ω. The enhanced performance of NiMn3P electrode can be ascribed to the fully grown amorphous nature and small-sized flake and flower structures of NiMn3P electrode material on the nickel foam (NF) surface. This configuration offered a higher number of active sites and a larger exposed area, facilitating efficient electrochemical reactions with the electrolyte. Consequently, the NiMn3P//AC electrode combination was chosen to further investigate its performance in supercapattery. The NiMn3P//AC supercapattery exhibited remarkable energy density of 105.4 Wh/kg and excellent cyclic stability with 84.7% retention after 3000 cycles. These findings underscored the superior electrochemical performance of the battery-type binder-free NiMn3P electrode, and highlight its potential for enhancing the overall performance of supercapattery.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links