Displaying publications 101 - 106 of 106 in total

Abstract:
Sort:
  1. Tan YS, Wong SK, Yong KT, Lim KH, Lim SH, Low YY
    J Nat Prod, 2023 Jan 27;86(1):232-236.
    PMID: 36651825 DOI: 10.1021/acs.jnatprod.2c00731
    Eugeniifoline (1), a pentacyclic indole alkaloid with a five-membered ring E, was isolated for the first time as a natural product from the stem-bark extract of Leuconotis eugeniifolia. Eugeniifoline (1) was previously reported as a synthetic product from a diversity-enhanced extract, but with the configuration at C-21 reported as S (1a). The configuration at C-21 was revised to R as shown in 1, based on the NOE data, GIAO NMR calculations, and DP4+ probability analysis, as well as the TDDFT-ECD method.
  2. Hanna GS, Benjamin MM, Choo YM, De R, Schinazi RF, Nielson SE, et al.
    J Nat Prod, 2024 Feb 23;87(2):217-227.
    PMID: 38242544 DOI: 10.1021/acs.jnatprod.3c00875
    The urgent need for new classes of orally available, safe, and effective antivirals─covering a breadth of emerging viruses─is evidenced by the loss of life and economic challenges created by the HIV-1 and SARS-CoV-2 pandemics. As frontline interventions, small-molecule antivirals can be deployed prophylactically or postinfection to control the initial spread of outbreaks by reducing transmissibility and symptom severity. Natural products have an impressive track record of success as prototypic antivirals and continue to provide new drugs through synthesis, medicinal chemistry, and optimization decades after discovery. Here, we demonstrate an approach using computational analysis typically used for rational drug design to identify and develop natural product-inspired antivirals. This was done with the goal of identifying natural product prototypes to aid the effort of progressing toward safe, effective, and affordable broad-spectrum inhibitors of Betacoronavirus replication by targeting the highly conserved RNA 2'-O-methyltransferase (2'-O-MTase). Machaeriols RS-1 (7) and RS-2 (8) were identified using a previously outlined informatics approach to first screen for natural product prototypes, followed by in silico-guided synthesis. Both molecules are based on a rare natural product group. The machaeriols (3-6), isolated from the genus Machaerium, endemic to Amazonia, inhibited the SARS-CoV-2 2'-O-MTase more potently than the positive control, Sinefungin (2), and in silico modeling suggests distinct molecular interactions. This report highlights the potential of computationally driven screening to leverage natural product libraries and improve the efficiency of isolation or synthetic analog development.
  3. Tan YS, Ng MP, Tan CH, Tang WK, Sim KS, Yong KT, et al.
    J Nat Prod, 2024 Feb 23;87(2):286-296.
    PMID: 38284153 DOI: 10.1021/acs.jnatprod.3c00960
    Nine new alkaloids, eugeniinalines A-H (1-8) and (+)-eburnamenine N-oxide (9), comprising one quinoline, six indole, and two isogranatanine alkaloids, were isolated from the stem-bark extract of the Malayan Leuconotis eugeniifolia. The structures and absolute configurations of these alkaloids were established based on the analysis of the spectroscopic data, GIAO NMR calculations, DP4+ probability analysis, TDDFT-ECD method, and X-ray diffraction analysis. Eugeniinaline A (1) represents a new pentacyclic quinoline alkaloid with a 6/6/5/6/7 ring system. Eugeniinaline G (7) and its seco-derivative, eugeniinaline H (8), were the first isogranatanine alkaloids isolated as natural products. The known alkaloids leucolusine (10) and melokhanine A (11) were found to be the same compound, based on comparison of the spectroscopic data of both compounds, with the absolute configuration of (7R, 20R, 21S). Eugeniinalines A and G (1 and 7) showed cytotoxic activity against the HT-29 cancer cell line with IC50 values of 7.1 and 7.2 μM, respectively.
  4. Chang SW, Lee JS, Lee JH, Kim JY, Hong J, Kim SK, et al.
    J Nat Prod, 2021 Mar 26;84(3):553-561.
    PMID: 33684292 DOI: 10.1021/acs.jnatprod.0c01062
    Cinnamomum cassia Presl (Cinnamon) has been widely cultivated in the tropical or subtropical areas, such as Yunnan, Fujian, Guandong, and Hainan in China, as well as India, Vietnam, Thailand, and Malaysia. Four new glycosides bearing apiuronic acid (1, 4, 6, and 7) and their sodium or potassium salts (2, 3, and 5), together with 31 known compounds, were isolated from a hot water extract of the bark of C. cassia via repeated chromatography. The structures of the new compounds (1-7) were determined by NMR, IR, MS, and ICP-AES data and by acid hydrolysis and sugar analysis. This is the first report of the presence of apiuronic acid glycosides. Some of the isolates were evaluated for their analgesic effects on a neuropathic pain animal model induced by paclitaxel. Cinnzeylanol (8), cinnacaside (9), kelampayoside A (10), and syringaresinol (11) showed analgesic effects against paclitaxel-induced cold allodynia.
  5. Lee FK, Chan NJ, Krishnan P, Datu Abdul Salam DS, Chee XW, Muhamad A, et al.
    J Nat Prod, 2024 Apr 26;87(4):675-691.
    PMID: 38442031 DOI: 10.1021/acs.jnatprod.3c00707
    Schwarzinicines A-D, a series of alkaloids recently discovered from Ficus schwarzii, exhibit pronounced vasorelaxant activity in rat isolated aorta. Building on this finding, a concise synthesis of schwarzinicines A and B has been reported, allowing further investigations into their biological properties. Herein, a preliminary exploration of the chemical space surrounding the structure of schwarzinicine A (1) was carried out aiming to identify structural features that are essential for vasorelaxant activity. A total of 57 analogs were synthesized and tested for vasorelaxant activity in rat isolated aorta. Both efficacy (Emax) and potency (EC50) of these analogs were compared. In addition to identifying structural features that are required for activity or associated with potency enhancement effect, four analogs showed significant potency improvements of up to 40.2-fold when compared to 1. Molecular dynamics simulation of a tetrameric 44-bound transient receptor potential canonical-6 (TRPC6) protein indicated that 44 could potentially form important interactions with the residues Glu509, Asp530, Lys748, Arg758, and Tyr521. These results may serve as a foundation for guiding further structural optimization of the schwarzinicine A scaffold, aiming to discover even more potent analogs.
  6. Samuvel DJ, Nguyen NT, Jaeschke H, Lemasters JJ, Wang X, Choo YM, et al.
    J Nat Prod, 2022 Jul 22;85(7):1779-1788.
    PMID: 35815804 DOI: 10.1021/acs.jnatprod.2c00324
    Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. Platanosides (PTSs) isolated from the American sycamore tree (Platanus occidentalis) represent a potential new four-molecule botanical drug class of antibiotics active against drug-resistant infectious disease. Preliminary studies have suggested that PTSs are safe and well tolerated and have antioxidant properties. The potential utility of PTSs in decreasing APAP hepatotoxicity in mice in addition to an assessment of their potential with APAP for the control of infectious diseases along with pain and pyrexia associated with a bacterial infection was investigated. On PTS treatment in mice, serum alanine aminotransferase (ALT) release, hepatic centrilobular necrosis, and 4-hydroxynonenal (4-HNE) were markedly decreased. In addition, inducible nitric oxide synthase (iNOS) expression and c-Jun-N-terminal kinase (JNK) activation decreased when mice overdosed with APAP were treated with PTSs. Computational studies suggested that PTSs may act as JNK-1/2 and Keap1-Nrf2 inhibitors and that the isomeric mixture could provide greater efficacy than the individual molecules. Overall, PTSs represent promising botanical drugs for hepatoprotection and drug-resistant bacterial infections and are effective in protecting against APAP-related hepatotoxicity, which decreases liver necrosis and inflammation, iNOS expression, and oxidative and nitrative stresses, possibly by preventing persistent JNK activation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links