Displaying publications 101 - 120 of 163 in total

Abstract:
Sort:
  1. Akita H, Kimura Z, Yusoff MZ, Nakashima N, Hoshino T
    Genome Announc, 2016;4(4).
    PMID: 27389268 DOI: 10.1128/genomeA.00630-16
    Burkholderia sp. strain CCA53 was isolated from leaf soil collected in Higashi-Hiroshima City in Hiroshima Prefecture, Japan. Here, we present a draft genome sequence of this strain, which consists of a total of 4 contigs containing 6,647,893 bp, with a G+C content of 67.0% and comprising 9,329 predicted coding sequences.
    Matched MeSH terms: Chromosome Mapping
  2. Issa R, Seradja VH, Abdullah MK
    Genome Announc, 2016;4(3).
    PMID: 27365342 DOI: 10.1128/genomeA.00376-16
    Here, we report of the annotated genome sequence of Mycobacterium tuberculosis MTB221/11. The organism was isolated from the cerebrospinal fluid of a patient in Malaysia.
    Matched MeSH terms: Chromosome Mapping
  3. Mohd Tap R, Kamarudin NA, Ginsapu SJ, Ahmed Bakri AR, Ahmad N, Amran F, et al.
    Genome Announc, 2018 Apr 05;6(14).
    PMID: 29622608 DOI: 10.1128/genomeA.00166-18
    Candida pseudohaemulonii is phylogenetically close to the C. haemulonii complex and exhibits resistance to amphotericin B and azole agents. We report here the draft genome sequence of C. pseudohaemulonii UZ153_17 isolated from the blood culture of a neutropenic patient. The draft genome is 3,532,003,666 bp in length, with 579,838 reads, 130 contigs, and a G+C content of 47.15%.
    Matched MeSH terms: Chromosome Mapping
  4. Badrun R, Abu Bakar N, Laboh R, Redzuan R, Bala Jaganath I
    Genome Announc, 2017 Jun 01;5(22).
    PMID: 28572313 DOI: 10.1128/genomeA.00408-17
    Blood disease bacterium A2 HR-MARDI was isolated from banana plants infected with banana blood disease and which were planted in Kuala Kangsar, Malaysia. Here, we report a draft genome sequence of blood disease bacterium A2 HR-MARDI, which could provide important information on the virulence mechanism of this pathogen.
    Matched MeSH terms: Chromosome Mapping
  5. Too CC, Ong KS, Ankenbrand MJ, Lee SM, Yule CM, Keller A
    Genome Announc, 2018 Jun 21;6(25).
    PMID: 29930066 DOI: 10.1128/genomeA.00561-18
    We report the draft genome sequence of a bacterial isolate, Paraburkholderia sp. strain C35, which was isolated from a Malaysian tropical peat swamp forest. The putative genes for the biogeochemical processes were annotated and are publicly available in the online databases.
    Matched MeSH terms: Chromosome Mapping
  6. Too CC, Ong KS, Lee SM, Yule CM, Keller A
    Genome Announc, 2018 Jun 21;6(25).
    PMID: 29930031 DOI: 10.1128/genomeA.00459-18
    We report here the draft genome sequences of a bacterial isolate, Dyella sp. strain C11, which was isolated from a Malaysian tropical peat swamp forest. The putative genes for the biogeochemical processes were annotated, and the genome was deposited in an online database.
    Matched MeSH terms: Chromosome Mapping
  7. Nadarajah K, Mat Razali N, Cheah BH, Sahruna NS, Ismail I, Tathode M, et al.
    Genome Announc, 2017 Oct 26;5(43).
    PMID: 29074665 DOI: 10.1128/genomeA.01188-17
    Sheath blight, caused by Rhizoctonia solani anastomosis group 1 subgroup 1A (AG1-1A), is one of the most devastating rice diseases worldwide. Here, we report the draft genome sequence of R. solani AG1-1A strain 1802/KB isolated from a popular Malaysian rice variety. To the best of our knowledge, this is the second reported representative genome from AG1-1A.
    Matched MeSH terms: Chromosome Mapping
  8. Azwani F, Suzuki K, Honjyo M, Tashiro Y, Futamata H
    Genome Announc, 2017 Sep 07;5(36).
    PMID: 28883136 DOI: 10.1128/genomeA.00875-17
    Comamonas testosteroni strain R2 was isolated from a continuous culture enriched by a low concentration of phenol-oxygenating activities with low Ks values (below 1 μM). The draft genome sequence of C. testosteroni strain R2 reported here may contribute to determining the phenol degradation gene cluster.
    Matched MeSH terms: Chromosome Mapping
  9. Najah S, Chong TM, Gerbaud C, Chan KG, Mellouli L, Pernodet JL
    Genome Announc, 2017 Aug 24;5(34).
    PMID: 28839022 DOI: 10.1128/genomeA.00828-17
    Streptomyces sp. TN58, isolated from a Tunisian soil sample, produces several natural products, including acyl alpha-l-rhamnopyranosides. It possesses a 7.6-Mb linear chromosome. This is, to our knowledge, the first genome sequence of a microorganism known to produce acyl alpha-l-rhamnopyranosides, and it will be helpful to study the biosynthesis of these specialized metabolites.
    Matched MeSH terms: Chromosome Mapping
  10. Ahmad N, Hii SY, Mohd Khalid MK, Abd Wahab MA, Hashim R, Tang SN, et al.
    Genome Announc, 2017 Mar 02;5(9).
    PMID: 28254972 DOI: 10.1128/genomeA.01670-16
    Corynebacterium diphtheriae has caused multiple isolated diphtheria cases in Malaysia over the years. Here, we report the first draft genome sequences of 15 Malaysia C. diphtheriae clinical isolates collected from the years 1981 to 2016.
    Matched MeSH terms: Chromosome Mapping
  11. Ahmad NS, Redjeki ES, Ho WK, Aliyu S, Mayes K, Massawe F, et al.
    Genome, 2016 Jul;59(7):459-72.
    PMID: 27253730 DOI: 10.1139/gen-2015-0153
    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous underutilized legume that has the potential to improve food security in semi-arid Africa. So far, there are a lack of reports of controlled breeding populations that could be used for variety development and genetic studies. We report here the construction of the first genetic linkage map of bambara groundnut using a F3 population derived from a "narrow" cross between two domesticated landraces (Tiga Nicuru and DipC) with marked divergence in phenotypic traits. The map consists of 238 DArT array and SSR based markers in 21 linkage groups with a total genetic distance of 608.3 cM. In addition, phenotypic traits were evaluated for a quantitative trait loci (QTL) analysis over two generations. A total of 36 significant QTLs were detected for 19 traits. The phenotypic effect explained by a single QTL ranged from 11.6% to 49.9%. Two stable QTLs were mapped for internode length and growth habit. The identified QTLs could be useful for marker-assisted selection in bambara groundnut breeding programmes.
    Matched MeSH terms: Chromosome Mapping
  12. Ngu MS, Thomson MJ, Bhuiyan MA, Ho C, Wickneswari R
    Genet. Mol. Res., 2014;13(4):9477-88.
    PMID: 25501158 DOI: 10.4238/2014.November.11.13
    Grain weight is a major component of rice grain yield and is controlled by quantitative trait loci. Previously, a rice grain weight quantitative trait locus (qGW6) was detected near marker RM587 on chromosome 6 in a backcross population (BC2F2) derived from a cross between Oryza rufipogon IRGC105491 and O. sativa cv. MR219. Using a BC2F5 population, qGW6 was validated and mapped to a region of 4.8 cM (1.2 Mb) in the interval between RM508 and RM588. Fine mapping using a series of BC4F3 near isogenic lines further narrowed the interval containing qGW6 to 88 kb between markers RM19268 and RM19271.1. According to the Duncan multiple range test, 8 BC4F4 near isogenic lines had significantly higher 100-grain weight (4.8 to 7.5% over MR219) than their recurrent parent, MR219 (P < 0.05). According to the rice genome automated annotation database, there are 20 predicted genes in the 88-kb target region, and 9 of them have known functions. Among the genes with known functions in the target region, in silico gene expression analysis showed that 9 were differentially expressed during the seed development stage(s) from gene expression series GSE6893; however, only 3 of them have known functions. These candidates provide targets for further characterization of qGW6, which will assist in understanding the genetic control of grain weight in rice.
    Matched MeSH terms: Physical Chromosome Mapping*
  13. Rahim HA, Bhuiyan MA, Lim LS, Sabu KK, Saad A, Azhar M, et al.
    Genet. Mol. Res., 2012;11(3):3277-89.
    PMID: 23079822 DOI: 10.4238/2012.September.12.11
    Advanced backcross families derived from Oryza sativa cv MR219/O. rufipogon IRGC105491 were utilized for identification of quantitative trait loci (QTL) for blast resistance using simple sequence repeat markers. Two hundred and sixty-one BC(2)F(3) families were used to construct a linkage map, using 87 markers, which covered 2375.2 cM of 12 rice chromosomes, with a mean density of 27.3 cM. The families were evaluated in a greenhouse for resistance to blast disease caused by pathotypes P7.2 and P5.0 of Magnaporthe oryzae. Five QTLs (qBL5.1, qBL5.2, qBL6.1, qBL8.1, and qBL10.1) for pathotype P5.0 and four QTLs (qBL5.3, qBL5.4, qBL7.1, and qBL8.2) for pathotype P7.2 were identified using the BC(2)F(3) families. Another linkage map was also constructed based on 31 BC(2)F(5) families, using 63 SSR markers, which covered 474.9 cM of 9 rice chromosomes, with a mean density of 8.01 cM. Five suggestive QTLs (qBL11.2, qBL11.3, qBL12.1, qBL12.2, qBL12.3) and one putative QTL (qBL2.1) were identified for pathotype P7.2. Also, seven suggestive QTLs (qBL1.1, qBL2.2, qBL4.1, qBL4.2, qBL5.3, qBL8.3, and qBL11.1) were detected for pathotype P5.0. We conclude that there is a non-race-specific resistance spectrum of O. rufipogon against M. oryzae pathotypes.
    Matched MeSH terms: Chromosome Mapping
  14. Kashiani P, Saleh G, Panandam JM, Abdullah NA, Selamat A
    Genet Mol Biol, 2012 Jul;35(3):614-21.
    PMID: 23055801 DOI: 10.1590/S1415-47572012000400012
    A study of genetic variation among 10 pairs of chromosomes extracted from 13 tropical sweet corn inbred lines, using 99 microsatellite markers, revealed a wide range of genetic diversity. Allelic richness and the number of effective alleles per chromosome ranged from 2.78 to 4.33 and 1.96 to 3.47, respectively, with respective mean values of 3.62 and 2.73. According to the Shannon's information index (I) and Nei's gene diversity coefficient (Nei), Chromosome 10 was the most informative chromosome (I = 1.311 and Nei = 0.703), while Chromosome 2 possessed the least (I = 0.762 and Nei = 0.456). Based on linkage disequilibrium (LD) measurements for loci less than 50 cM apart on the same chromosome, all loci on Chromosomes 1, 6 and 7 were in equilibrium. Even so, there was a high proportion of genetic variation in Chromosomes 4, 5, 8, 9 and 10, thereby revealing their appropriateness for use in the genetic diversity investigations among tropical sweet corn lines. Chromosome 4, with the highest number of loci in linkage disequilibrium, was considered the best for marker-phenotype association and QTL mapping, followed by Chromosomes 5, 8, 9 and 10.
    Matched MeSH terms: Chromosome Mapping
  15. Spieth PT
    Genetics, 1975 Aug;80(4):785-805.
    PMID: 1193373
    Electrophoretically detectable variation in the fungus Neurospora intermedia has been surveyed among isolates from natural populations in Malaya, Papua, Australia and Florida. The principal result is a pattern of genetic variation within and between populations that is qualitatively no different than the well documented patterns for Drosophila and humans. In particular, there is a high level of genetic variation, the majority of which occurs at the level of local populations. Evidence is presented which argues that N. intermedia has a population structure analogous to that of an annual vascular plant with a high level of vegetative reproduction. Sexual reproduction appears to be a regular feature in the biology of the species. Substantial heterokaryon function seems unlikely in natural populations of N. intermedia. Theoretical considerations concerning the mechanisms underlying the observed pattern of variation most likely should be consistent with haploid selection theory. The implications of this constraint upon the theory are discussed in detail, leading to the presentation of a model based upon the concept of environmental heterogenicity. The essence of the model, which is equally applicable to haploid and diploid situations, is a shifting distribution of multiple adaptive niches among local populations such that a given population has a small net selective pressure in favor of one allele or another, depending upon its particular distribution of niches. Gene flow among neighboring populations with differing net selective pressures is postulated as the principal factor underlying intrapopulational allozyme variation.
    Matched MeSH terms: Chromosome Mapping
  16. Tam SM, Samipak S, Britt A, Chetelat RT
    Genetica, 2009 Dec;137(3):341-54.
    PMID: 19690966 DOI: 10.1007/s10709-009-9398-3
    DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.
    Matched MeSH terms: Chromosome Mapping
  17. Golestan Hashemi FS, Rafii MY, Ismail MR, Mohamed MT, Rahim HA, Latif MA, et al.
    Gene, 2015 Jan 25;555(2):101-7.
    PMID: 25445269 DOI: 10.1016/j.gene.2014.10.048
    MRQ74, a popular aromatic Malaysian landrace, allows for charging considerably higher prices than non-aromatic landraces. Thus, breeding this profitable trait has become a priority for Malaysian rice breeding. Despite many studies on aroma genetics, ambiguities considering its genetic basis remain. It has been observed that identifying quantitative trait loci (QTLs) based on anchor markers, particularly candidate genes controlling a trait of interest, can increase the power of QTL detection. Hence, this study aimed to locate QTLs that influence natural variations in rice scent using microsatellites and candidate gene-based sequence polymorphisms. For this purpose, an F2 mapping population including 189 individual plants was developed by MRQ74 crosses with 'MR84', a non-scented Malaysian accession. Additionally, qualitative and quantitative approaches were applied to obtain a phenotype data framework. Consequently, we identified two QTLs on chromosomes 4 and 8. These QTLs explained from 3.2% to 39.3% of the total fragrance phenotypic variance. In addition, we could resolve linkage group 8 by adding six gene-based primers in the interval harboring the most robust QTL. Hence, we could locate a putative fgr allele in the QTL found on chromosome 8 in the interval RM223-SCU015RM (1.63cM). The identified QTLs represent an important step toward recognition of the rice flavor genetic control mechanism. In addition, this identification will likely accelerate the progress of the use of molecular markers for gene isolation, gene-based cloning, and marker-assisted selection breeding programs aimed at improving rice cultivars.
    Matched MeSH terms: Chromosome Mapping
  18. Keong BP, Siraj SS, Daud SK, Panandam JM, Rahman AN
    Gene, 2014 Feb 15;536(1):114-7.
    PMID: 24333858 DOI: 10.1016/j.gene.2013.11.068
    A preliminary linkage map was constructed by applying backcross and testcross strategy using microsatellite (SSR) markers developed for Xiphophorus and Poecilia reticulata in ornamental fish, molly Poecilia sp. The linkage map having 18 SSR loci consisted of four linkage groups that spanned a map size of 516.1cM. Association between genotypes and phenotypes was tested in a random fashion and QTL for dorsal fin length was found to be linked to locus Msb069 on linkage group 2. Coincidentally, locus Msb069 was also reported as putative homologue primer pairs containing SSRs repeat motif which encoded hSMP-1, a sex determining locus. Dorsal fin length particularly in males of Poecilia latipinna is an important feature during courtship display. Therefore, we speculate that both dorsal fin length and putative hSMP-1 gene formed a close proximity to male sexual characteristics.
    Matched MeSH terms: Chromosome Mapping/methods; Chromosome Mapping/veterinary
  19. Turner BC
    Fungal Genet. Biol., 2003 Jul;39(2):142-50.
    PMID: 12781673
    Two new loci found in one strain of Neurospora crassa (P2604) collected in Malaya are related to the meiotic drive system Spore killer Sk-2. Sk-2 was found in Neurospora intermedia and introgressed into N. crassa. P2604 showed high resistance to killing when crossed to Sk-2. This resistance was found to be linked to, but not allelic to, resistance locus r(Sk-2) on LGIIIL. Analysis showed that the high resistance phenotype of P2604 requires resistance alleles at two different loci on LGIIIR. Strains carrying a resistance allele at only the proximal or the distal locus, respectively, were obtained and intercrossed. Highly resistant strains were obtained by rejoining the two genes. The proximal locus alone confers a low level of resistance. This locus was named pr(Sk-2) for partial resistance to Sk-2. The distal locus was named mod(pr) because its only known phenotype is to modify pr(Sk-2).
    Matched MeSH terms: Chromosome Mapping
  20. Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, et al.
    Front Plant Sci, 2015;6:886.
    PMID: 26635817 DOI: 10.3389/fpls.2015.00886
    Rice is a staple and most important security food crop consumed by almost half of the world's population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.
    Matched MeSH terms: Chromosome Mapping
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links