Displaying publications 101 - 106 of 106 in total

Abstract:
Sort:
  1. Chai KF, Adzahan NM, Karim R, Rukayadi Y, Ghazali HM
    Food Chem, 2019 Feb 15;274:808-815.
    PMID: 30373014 DOI: 10.1016/j.foodchem.2018.09.065
    Rambutan seed is usually discarded during fruit processing. However, the seed contains a considerable amount of crude fat. Hence, the objective of this study was to investigate the fat properties and antinutrient content of the seed during fermentation of rambutan fruit. Results showed that the crude fat content of the seed reduced by 22% while its free fatty acid content increased by 4.3 folds after 10 days of fermentation. Arachidic acid was selectively reduced and was replaced by linoleic acid from the seventh day of fermentation onwards. Only 14.5% of triacylglycerol remained in the seed fat at the end of fermentation. The complete melting temperature, crystallization onset temperature and solid fat index at 37 °C of the fermented seed fat were higher than that of non-fermented seed fat. The saponin and tannin contents of the seed were reduced by 67% and 47%, respectively, after fermentation.
    Matched MeSH terms: Fatty Acids/analysis*
  2. Carlsohn MR, Groth I, Tan GYA, Schütze B, Saluz HP, Munder T, et al.
    Int J Syst Evol Microbiol, 2007 Jul;57(Pt 7):1640-1646.
    PMID: 17625209 DOI: 10.1099/ijs.0.64903-0
    Three actinomycetes isolated from the surfaces of rocks in a medieval slate mine were examined in a polyphasic taxonomic study. Chemotaxonomic and morphological characteristics of the isolates were typical of strains of the genus Amycolatopsis. The isolates had identical 16S rRNA gene sequences and formed a distinct phyletic line towards the periphery of the Amycolatopsis mediterranei clade, being most closely related to Amycolatopsis rifamycinica. The organisms shared a wide range of genotypic and phenotypic markers that distinguished them from their closest phylogenetic neighbours. On the basis of these results, a novel species, Amycolatopsis saalfeldensis sp. nov., is proposed. The type strain is HKI 0457(T) (=DSM 44993(T)=NRRL B-24474(T)).
    Matched MeSH terms: Fatty Acids/analysis
  3. Gouk SW, Cheng SF, Mok JS, Ong AS, Chuah CH
    Br J Nutr, 2013 Dec 14;110(11):1987-95.
    PMID: 23756564 DOI: 10.1017/S0007114513001475
    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.
    Matched MeSH terms: Fatty Acids/analysis
  4. Wu Y, Lai Q, Zhou Z, Qiao N, Liu C, Shao Z
    Int J Syst Evol Microbiol, 2009 Jun;59(Pt 6):1474-9.
    PMID: 19502338 DOI: 10.1099/ijs.0.001552-0
    A taxonomic study was carried out on strain A-11-3(T), which was isolated from an oil-enriched consortia from the surface seawater of Hong-Deng dock in the Straits of Malacca and Singapore. Cells were aerobic, Gram-negative, non-spore-forming irregular rods. The strain was catalase- and oxidase-negative. It grew on a restricted spectrum of organic compounds, including some organic acids and alkanes. 16S rRNA gene sequence comparisons showed that strain A-11-3(T) was most closely related to the type strains of Alcanivorax jadensis (96.8 % sequence similarity), Alcanivorax borkumensis (96.8 %), Alcanivorax dieselolei (94.8 %), Alcanivorax venustensis (94.2 %) and Alcanivorax balearicus (94.0 %). The predominant fatty acids were C(16 : 0) (31.2 %), C(18 : 1)omega7c (24.8 %), C(18 : 0) (9.6 %), C(12 : 0) (8.3 %), C(16 : 1)omega7c (8.3 %) and C(16 : 0) 3-OH (5.1 %). The G+C content of the genomic DNA was 54.7 mol%. Moreover, the strain produced lipopeptides as its surface-active compounds. According to physiological and biochemical tests, DNA-DNA hybridization results and sequence comparisons of the 16S-23S internal transcribed spacer, the gyrB gene and the alkane hydroxylase gene alkB1, strain A-11-3(T) was affiliated with the genus Alcanivorax but could be readily distinguished from recognized Alcanivorax species. Therefore strain A-11-3(T) represents a novel species of the genus Alcanivorax for which the name Alcanivorax hongdengensis sp. nov. is proposed. The type strain is A-11-3(T) (=CGMCC 1.7084(T)=LMG 24624(T)=MCCC 1A01496(T)).
    Matched MeSH terms: Fatty Acids/analysis
  5. Zakaria ZA, Kumar GH, Mat Jais AM, Sulaiman MR, Somchit MN
    Methods Find Exp Clin Pharmacol, 2008 Jun;30(5):355-62.
    PMID: 18806894 DOI: 10.1358/mf.2008.30.5.1186084
    The present study was carried out to elucidate the antinociceptive, antiinflammatory and antipyretic properties of the aqueous and lipid-based extracts of Channa striatus fillet in rats. The antinociceptive activity was assessed using the formalin test, and the antiinflammatory and antipyretic activities were assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. Both types of extracts were prepared in concentrations of 10%, 50% and 100% by serial dilution in distilled water or dimethyl sulfoxide, respectively, and were administered subcutaneously 30 min prior to each test. Except for the 10% aqueous extract which exhibits activity only in the early phase, the extracts were found to exhibit significant (P < 0.05) activity in the early and late phases of the formalin test. Furthermore, the aqueous and lipid-based extracts were also found to show significant (P < 0.05) antiinflammatory activity, with the former showing a greater effect at the lowest concentration used. The lipidbased, but not the aqueous, extract was found to have significant (P < 0.05) activity in the pyrexia test. In conclusion, the present study demonstrated that C. striatus extracts possess antinociceptive, antiinflammatory and antipyretic activities.
    Matched MeSH terms: Fatty Acids/analysis
  6. Ser HL, Zainal N, Palanisamy UD, Goh BH, Yin WF, Chan KG, et al.
    Antonie Van Leeuwenhoek, 2015 Jun;107(6):1369-78.
    PMID: 25863667 DOI: 10.1007/s10482-015-0431-5
    A novel Streptomyces, strain MUSC 26(T), was isolated from mangrove soil at Tanjung Lumpur, Malaysia. The bacterium was observed to be Gram-positive and to form grayish yellow aerial and substrate mycelium on ISP 7 agar. A polyphasic approach was used to study the taxonomy of strain MUSC 26(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The cell wall peptidoglycan was determined to contain LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9 (H8) and MK-9(H6). The polar lipids detected were identified as diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylmethylethanolamine and hydroxyphosphatidylmethylethanolamine. The predominant cellular fatty acids (>10.0 %) were identified as anteiso-C15:0 (31.4 %), iso-C16:0 (16.3 %), iso-C15:0 (13.9 %) and anteiso-C17:0 (12.6 %). The cell wall sugars were found to be galactose, glucose, mannose, ribose and rhamnose. These results suggest that MUSC 26(T) should be placed within the genus Streptomyces. Phylogenetic analysis indicated that closely related strains include Streptomyces qinglanensis 172205(T) (96.5 % sequence similarity), S. sodiiphilus YIM 80305(T) (96.5 %) and S. rimosus subsp. rimosus ATCC 10970(T) (96.4 %). DNA-DNA relatedness values between MUSC 26(T) and closely related type strains ranged from 17.0 ± 2.2 to 33.2 ± 5.3 %. Comparison of BOX-PCR fingerprints indicated MUSC 26(T) presents a unique DNA profile. The DNA G+C content was determined to be 74.6 mol%. Based on this polyphasic study of MUSC 26(T), it is concluded that this strain represents a novel species, for which the name Streptomyces gilvigriseus sp. nov. is proposed. The type strain is MUSC 26(T) (=DSMZ 42173(T) = MCCC 1K00504(T)).
    Matched MeSH terms: Fatty Acids/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links