Displaying publications 101 - 120 of 1820 in total

Abstract:
Sort:
  1. Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, et al.
    Appl Microbiol Biotechnol, 2013 Feb;97(4):1475-88.
    PMID: 23324802 DOI: 10.1007/s00253-012-4663-2
    The Bacillaceae family members are a good source of bacteria for bioprocessing and biotransformation involving whole cells or enzymes. In contrast to Bacillus and Geobacillus, Anoxybacillus is a relatively new genus that was proposed in the year 2000. Because these bacteria are alkali-tolerant thermophiles, they are suitable for many industrial applications. More than a decade after the first report of Anoxybacillus, knowledge accumulated from fundamental and applied studies suggests that this genus can serve as a good alternative in many applications related to starch and lignocellulosic biomasses, environmental waste treatment, enzyme technology, and possibly bioenergy production. This current review provides the first summary of past and recent discoveries regarding the isolation of Anoxybacillus, its medium requirements, its proteins that have been characterized and cloned, bioremediation applications, metabolic studies, and genomic analysis. Comparisons to some other members of Bacillaceae and possible future applications of Anoxybacillus are also discussed.
    Matched MeSH terms: Phylogeny
  2. Li D, Midgley DJ, Ross JP, Oytam Y, Abell GC, Volk H, et al.
    Arch Microbiol, 2012 Jun;194(6):513-23.
    PMID: 22245906 DOI: 10.1007/s00203-012-0788-z
    Microbial diversity within formation water and oil from two compartments in Bokor oil reservoir from a Malaysian petroleum oil field was examined. A total of 1,056 16S rRNA gene clones were screened from each location by amplified ribosomal DNA restriction analysis. All samples were dominated by clones affiliated with Marinobacter, some novel Deferribacteraceae genera and various clones allied to the Methanococci. In addition, either Marinobacterium- or Pseudomonas-like operational taxonomic units were detected from either compartment. A systematic comparison with the existing pertinent studies was undertaken by analysing the microbial amplicons detected and the PCR primers used. The analyses demonstrated that bacterial communities were site specific, while Archaea co-occurred more frequently. Amplicons related to Marinobacter, Marinobacterium and Pseudomonas were detected in a number of the studies examined, suggesting they may be ubiquitous members in oil reservoirs. Further analysis of primers used in those studies suggested that most primer pairs had fairly broad but low matches across the bacterial and archaeal domains, while a minority had selective matches to certain taxa or low matches to all the microbial taxa tested. Thus, it indicated that primers may play an important role in determining which taxa would be detected.
    Matched MeSH terms: Phylogeny
  3. Dinesh B, Furusawa G, Amirul AA
    Arch Microbiol, 2017 Jan;199(1):63-67.
    PMID: 27506901 DOI: 10.1007/s00203-016-1275-8
    A Gram-staining-negative, aerobic, rod-shaped, yellow-orange-pigmented, gliding bacterium, designated as strain ST2L12(T), was isolated from estuarine mangrove sediment from Matang Mangrove Forest, Perak, Malaysia. Strain ST2L12(T) grew at 15-39 °C, pH 6-8 and in 1-6 % (w/v) NaCl. This strain was able to degrade xylan and casein. 16S rRNA gene sequence analysis showed 95.3-92.8 % similarity to members of the genera Mangrovimonas, Meridianimaribacter, Sediminibacter, Gaetbulibacter and Hoppeia. Phylogenetic analysis indicated that it belonged to the family Flavobacteriaceae. Respiratory quinone present was menaquinone-6 (MK-6), and the DNA G+C content was 38.3 mol%. The predominant fatty acids were iso-C15:0, iso-C15:1, C15:0 and iso-C17:0 3-OH. Moreover, previous genome comparison study showed that the genome of ST2L12(T) is 1.4 times larger compared to its closest relative, Mangrovimonas yunxiaonensis LYYY01(T). Phenotypic, fatty acid, 16S rRNA gene sequence and previous genome data indicate that strain ST2L12(T) represents a novel species of the genus Mangrovimonas in the family Flavobacteriaceae, for which the name Mangrovimonas xylaniphaga sp. nov. is proposed. The type strain of Mangrovimonas xylaniphaga is ST2L12(T) (=LMG 28914(T)=JCM 30880(T)).
    Matched MeSH terms: Phylogeny
  4. Devaraj K, Tan GYA, Chan KG
    Arch Microbiol, 2017 Aug;199(6):897-906.
    PMID: 28364274 DOI: 10.1007/s00203-017-1371-4
    In this study, a total of 147 soil actinobacterial strains were screened for their ability to inhibit response of Chromobacterium violaceum CV026 to short chain N-acyl homoserine lactone (AHL) which is a quorum sensing molecule. Of these, three actinobacterial strains showed positive for violacein inhibition. We further tested these strains for the inhibition of Pseudomonas aeruginosa PAO1 quorum sensing-regulated phenotypes, namely, swarming and pyocyanin production. The three strains were found to inhibit at least one of the quorum sensing-regulated phenotypes of PAO1. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these strains belong to the genera Micromonospora, Rhodococcus and Streptomyces. This is the first report presenting quorum quenching activity by a species of the genus Micromonospora. Our data suggest that Actinobacteria may be a rich source of active compounds that can act against bacterial quorum sensing system.
    Matched MeSH terms: Phylogeny
  5. Tan SW, Ideris A, Omar AR, Yusoff K, Hair-Bejo M
    Arch Virol, 2010;155(1):63-70.
    PMID: 19898736 DOI: 10.1007/s00705-009-0540-4
    Sequence analysis of the fusion (F) gene of eight Malaysian NDV isolates showed that all the isolates were categorized as velogenic viruses, with the F cleavage site motif (112)R-R-Q-K-R(116) or (112)R-R-R-K-R(116) at the C-terminus of the F(2) protein and phenylalanine (F) at residue 117 at the N-terminus of the F(1) protein. Phylogenetic analysis revealed that all of the isolates were grouped in two distinct clusters under sub-genotype VIId. The isolates were about 4.8-11.7% genetically distant from sub-genotypes VIIa, VIIb, VIIc and VIIe. When the nucleotide sequences of the eight Malaysian isolates were compared phylogenetically to those of the old published local isolates, it was found that genotype VIII, VII, II and I viruses exist in Malaysia and caused sporadic infections. It is suggested that genotype VII viruses were responsible for most of the outbreaks in recent years.
    Matched MeSH terms: Phylogeny*
  6. Jiang J, Ridley AW, Tang H, Croft BJ, Johnson KN
    Arch Virol, 2008;153(5):839-48.
    PMID: 18299794 DOI: 10.1007/s00705-008-0058-1
    Fiji leaf gall is an important disease of sugarcane in Australia and other Asia-Pacific countries. The causative agent is the reovirus Fiji disease virus (FDV). Previous reports indicate that there is variation in pathology between virus isolates. To investigate the amount of genetic variation found in FDV, 25 field isolates from Australia, Papua New Guinea and Malaysia were analysed by partial sequencing of genome segments S3 and S9. There was up to 15% divergence in the nucleotide sequence among the 25 isolates. A similar amount of divergence and pattern of relationships was found for each of the two genomic segments for most of the field isolates, although reassortment of genome segments seems likely for at least one of the Papua New Guinean isolates. The finding of a high level of variation in FDV isolated in different regions has implications for quarantine and disease management.
    Matched MeSH terms: Phylogeny
  7. Perera D, Yusof MA, Podin Y, Ooi MH, Thao NT, Wong KK, et al.
    Arch Virol, 2007;152(6):1201-8.
    PMID: 17308978
    A phylogenetic analysis of VP1 and VP4 nucleotide sequences of 52 recent CVA16 strains demonstrated two distinct CVA16 genogroups, A and B, with the prototype strain being the only member of genogroup A. CVA16 G-10, the prototype strain, showed a nucleotide difference of 27.7-30.2% and 19.9-25.2% in VP1 and VP4, respectively, in relation to other CVA16 strains, which formed two separate lineages in genogroup B with nucleotide variation of less than 13.4% and less than 16.3% in VP1 and VP4, respectively. Lineage 1 strains circulating before 2000 were later displaced by lineage 2 strains.
    Matched MeSH terms: Phylogeny*
  8. Daum LT, Canas LC, Klimov AI, Shaw MW, Gibbons RV, Shrestha SK, et al.
    Arch Virol, 2006 Sep;151(9):1863-74.
    PMID: 16736092
    Currently circulating influenza B viruses can be divided into two antigenically and genetically distinct lineages referred to by their respective prototype strains, B/Yamagata/16/88 and B/Victoria/2/87, based on amino acid differences in the hemagglutinin surface glycoprotein. During May and July 2005, clinical specimens from two early season influenza B outbreaks in Arizona and southeastern Nepal were subjected to antigenic (hemagglutinin inhibition) and nucleotide sequence analysis of hemagglutinin (HA1), neuraminidase (NA), and NB genes. All isolates exhibited little reactivity with the B/Shanghai/361/2002 (B/Yamagata-like) vaccine strain and significantly reduced reactivity with the previous 2003/04 B/Hong Kong/330/2001 (B/Victoria-like) vaccine strain. The majority of isolates were antigenically similar to B/Hawaii/33/2004, a B/Victoria-like reference strain. Sequence analysis indicated that 33 of 34 isolates contained B/Victoria-like HA and B/Yamagata-like NA and NB proteins. Thus, these outbreak isolates are both antigenically and genetically distinct from the current Northern Hemisphere vaccine virus strain as well as the previous 2003-04 B/Hong Kong/330/2001 (B/Victoria lineage) vaccine virus strain but are genetically similar to B/Malaysia/2506/2004, the vaccine strain proposed for the coming seasons in the Northern and Southern Hemispheres. Since these influenza B outbreaks occurred in two very distant geographical locations, these viruses may continue to circulate during the 2006 season, underscoring the importance of rapid molecular monitoring of HA, NA and NB for drift and reassortment.
    Matched MeSH terms: Phylogeny
  9. Herrero LJ, Lee CS, Hurrelbrink RJ, Chua BH, Chua KB, McMinn PC
    Arch Virol, 2003 Jul;148(7):1369-85.
    PMID: 12827466
    Human enterovirus 71 (EV71) (genus Enterovirus, family Picornaviridae) has been responsible for sporadic cases and outbreaks of hand-foot-and-mouth disease (HFMD), aseptic meningitis, encephalitis and poliomyelitis-like disease in Europe, the U.S.A., Australia and Asia. Recently, there has been an increase in EV71 activity in the Asia-Pacific region, with many outbreaks of HFMD associated with brainstem encephalitis manifesting as neurogenic pulmonary oedema with a high case fatality rate. In 1997, and again in 2000, EV71 outbreaks occurred in peninsular Malaysia. Variations in VP1 gene sequences have been shown to divide all known EV71 field isolates into three distinct genogroups (A, B and C). Consequently we examined the VP1 gene sequences of 43 EV71 strains isolated in peninsular Malaysia between 1997 and 2000 in order to determine the genogroup prevalence over the period. In this study we show that four subgenogroups (B3, B4, C1 and C2) of EV71 circulated in peninsular Malaysia between 1997 and 2000. Subgenogroups B3, B4 and C1 have been identified as the primary cause of the outbreaks of EV71 in peninsular Malaysia. Subgenogroup C1 also displayed endemic circulation from 1997 to 2000 and subgenogroup C2 was present at a low level during the 1997 outbreak.
    Matched MeSH terms: Phylogeny
  10. Chua KB, Wang LF, Lam SK, Eaton BT
    Arch Virol, 2002 Jul;147(7):1323-48.
    PMID: 12111411
    A novel paramyxovirus in the genus Rubulavirus, named Tioman virus (TiV), was isolated in 1999 from a number of pooled urine samples of Island Flying Foxes (Pteropus hypomelanus) during the search for the reservoir host of Nipah virus. TiV is antigenically related to Menangle virus (MenV) that was isolated in Australia in 1997 during disease outbreak in pigs. Sequence analysis of the full length genome indicated that TiV is a novel member of the genus Rubulavirus within the subfamily Paramyxovirinae, family Paramyxoviridae. However, there are several features of TiV which make it unique among known paramyxoviruses and rubulaviruses in particular: (1) TiV, like MenV, uses the nucleotide G as a transcriptional initiation site, rather than the A residue used by all other known paramyxoviruses; (2) TiV uses C as the +1 residue for all intergenic regions, a feature not seen for rubulaviruses but common for all other members within the subfamily Paramyxovirinae; (3) Although the attachment protein of TiV has structural features that are conserved in other rubulaviruses, it manifests no overall sequence homology with members of the genus, lacks the sialic acid-binding motif N-R-K-S-C-S and has only two out of the six highly conserved residues known to be important for the catalytic activity of neuraminidase.
    Matched MeSH terms: Phylogeny
  11. Sudthongkong C, Miyata M, Miyazaki T
    Arch Virol, 2002 Nov;147(11):2089-109.
    PMID: 12417946
    Tropical iridovirus infection causes severe epizootic resulting in mass mortalities and large economic losses in freshwater ornamental fishes cultured in Southeast Asian countries, in wild fish seedlings captured in South China Sea, and in marine fishes farmed in Japan, Singapore, and Thailand. All of tropical iridovirus-infected fishes histopathologically showed the systemic formation of inclusion body-bearing cells and necrosis of virus-infected splenocytes and hematopoietic cells. We designed primer sets for the ATPase gene and the major capsid protein (MCP) gene and sequenced the PCR products derived from 5 iridovirus isolates from sea bass in South China Sea, red sea bream in Japan, brown-spotted grouper with a grouper sleepy disease in Thailand, dwarf gourami from Malaysia and African lampeye from Sumatra Island, Indonesia. The ATPase gene and the MCP gene of these 5 viral isolates were highly homologous (> 95.8%, > 94.9% identity, respectively) and the deduced amino acid sequences of the ATPase and the MCP were also highly identical (> 98.1%, > 97.2% identity, respectively). Based on the high homology, these 5 isolates of tropical iridovirus from various fishes in geographically different regions were determined to have a single origin and to be native to Southeast Asian regions. However, these sequences were far different from those of members of the genera Ranavirus, Lymphocystivirus and Iridovirus in the Family Iridoviridae. We propose a new genus "Tropivirus" for tropical iridovirus in the Family Iridoviridae.
    Matched MeSH terms: Phylogeny
  12. Munemura T, Saikusa M, Kawakami C, Shimizu H, Oseto M, Hagiwara A, et al.
    Arch Virol, 2003 Feb;148(2):253-63.
    PMID: 12556991
    Enterovirus 71 (EV71) is known as one of the major causative agents of hand, foot and mouse disease (HFMD) and is also associated with neurological manifestations such as aseptic meningitis, polio-like paralysis and encephalitis. Recently, large HFMD outbreaks, involving severe neurological complications, have been experienced in Malaysia, Taiwan and some other countries in the Western-Pacific region. To investigate the genetic diversity of EV71 isolates in a single community in Japan, nucleotide sequences of the VP4 region of 52 EV71 isolates in Yokohama City from 1982 to 2000 were determined and the phylogenetic relationship was compared with other referential EV71 strains in Japan and in the world. There were two major genotypes of EV71 in Yokohama City through the 1980's and 1990's. Six EV71 isolates in the early 1980's in Yokohama City were closely related to those from HFMD outbreaks in Japan and from outbreaks of polio-like paralysis in Europe in the 1970's. During recent HFMD outbreaks in 1997 and 2000, two distinct genotypes of EV71 were co-circulating in Yokohama City as in HFMD outbreaks in Malaysia and Taiwan. However, the genetic diversity of EV71 in Yokohama City was not directly correlated with the severity of HFMD. The results confirmed the circulation of two distinct genotypes of EV71 over the past 20 years in Japan.
    Matched MeSH terms: Phylogeny
  13. Arai YT, Yamada K, Kameoka Y, Horimoto T, Yamamoto K, Yabe S, et al.
    Arch Virol, 1997;142(9):1787-96.
    PMID: 9672637
    A simple and rapid single-step reverse transcriptase-polymerase chain reaction (RT-PCR) was used to investigate the nucleoprotein (N) gene of 11 rabies viruses. A conserved set of RT-PCR primers was designed to amplify the most variable region in the N gene. N gene regions were amplified from 6 fixed laboratory viruses, 4 street viruses from dogs in Thailand, and a horse in Zambia. Sequences of the amplified products, together with the database of 91 additional sequences, were analyzed by using PILEUP program of the GCG package. The rabies viruses grouped into at least 9 distinct clusters by < 90% nucleotide similarity of the N gene region: I (4 isolates, USA), II (2 isolates, South America), III (3 isolates, Africa), IV (52 strains, Europe, Middle East, Africa and South America), V (16 isolates, North America and Arctic), VI (17 isolates, Africa), VII (1 isolate, Africa), VIII (6 isolates, Thailand and Malaysia) and IX (1 isolate, Sri Lanka). A unique group of rabies viruses from Thailand and clusters of isolates corresponding to their geographic origin also were determined. The simple and rapid single-step RT-PCR proved to be useful for identifying rabies viruses, and for grouping the viruses into clades by sequence analysis.
    Matched MeSH terms: Phylogeny
  14. Gibbs AJ, Mackenzie AM, Abdul-Samad N
    Arch Virol, 1997;142(8):1697-702.
    PMID: 9672629
    A tymoyirus isolated from Malaysian crops of Calopogonium mucunoides has been shown to have virions that are serologically indistinguishable from those of clitoria yellow vein tymovirus. We have sequenced the virion protein (VP) gene of the virus and have found that although it is a member of the cluster that includes CYVV, it is the most distinct member of that cluster (< 62% sequence identity with all the others), and is clearly a separate species, which we propose should be named calopogonium yellow vein virus. Most of the serological specificity of the virions of tymoviruses seems to reside in the C-terminal hexapeptide of the virion protein.
    Matched MeSH terms: Phylogeny
  15. Kong LL, Omar AR, Hair-Bejo M, Aini I, Seow HF
    Arch Virol, 2004 Feb;149(2):425-34.
    PMID: 14745606
    The deduced amino acid sequences of segment A and B of two very virulent Infectious bursal disease virus (vvIBDV) isolates, UPM94/273 and UPM97/61 were compared with 25 other IBDV strains. Twenty amino acid residues (8 in VP1, 5 in VP2, 2 in VP3, 4 in VP4, 1 in VP5) that were common to vvIBDV strains were detected. However, UPM94/273 is an exceptional vvIBDV with usual amino acid substitutions. The differences in the divergence of segment A and B indicated that the vvIBDV strains may have been derived from genetic reassortment of a single ancestral virus or both segments have different ability to undergo genetic variation due to their different functional constraints.
    Matched MeSH terms: Phylogeny
  16. Chowdhury SM, Omar AR, Aini I, Hair-Bejo M, Jamaluddin AA, Md-Zain BM, et al.
    Arch Virol, 2003 Dec;148(12):2437-48.
    PMID: 14648297
    Specific-pathogen-free (SPF) chickens inoculated with low passage Chicken anaemia virus (CAV), SMSC-1 and 3-1 isolates produced lesions suggestive of CAV infection. Repeated passages of the isolates in cell culture until passage 60 (P60) and passage 123 produced viruses that showed a significantly reduced level of pathogenicity in SPF chickens compared to the low passage isolates. Sequence comparison indicated that nucleotide changes in only the coding region of the P60 passage isolates were thought to contribute to virus attenuation. Phylogenetic analysis indicated that SMSC-1 and 3-1 were highly divergent, but their P60 passage derivatives shared significant homology to a Japanese isolate A2.
    Matched MeSH terms: Phylogeny
  17. Lee CC, Lin CY, Hsu HW, Yang CS
    Arch Virol, 2020 Nov;165(11):2715-2719.
    PMID: 32776255 DOI: 10.1007/s00705-020-04769-2
    We report two novel RNA viruses from yellow crazy ants, (Anoplolepis gracilipes) detected using next-generation sequencing. The complete genome sequences of the two viruses were 10,662 and 8,238 nucleotides in length, respectively, with both possessing two open reading frames with three conserved protein domains. The genome organization is characteristic of members of the genus Triatovirus in the family Dicistroviridae. The two novel viruses were tentatively named "Anoplolepis gracilipes virus 1" and "Anoplolepis gracilipes virus 2" (AgrV-1 and AgrV-2). Phylogenetic analyses based on amino acid sequences of the non-structural polyprotein (ORF1) suggest that the two viruses are triatovirus-like viruses. This is the first report on the discovery of novel triatovirus-like viruses in yellow crazy ants with a description of their genome structure (two ORFs and conserved domains of RNA helicase, RNA-dependent RNA polymerase, and capsid protein), complete sequences, and viral prevalence across the Asia-Pacific region.
    Matched MeSH terms: Phylogeny*
  18. Ng KT, Takebe Y, Kamarulzaman A, Tee KK
    Arch Virol, 2021 Jan;166(1):225-229.
    PMID: 33084935 DOI: 10.1007/s00705-020-04855-5
    Genome sequences of members of a potential fourth rhinovirus (RV) species, provisionally denoted as rhinovirus A clade D, from patients with acute respiratory infection were determined. Bayesian coalescent analysis estimated that clade D emerged around the 1940s and diverged further around 2006-2007 into two distinctive sublineages (RV-A8-like and RV-A45-like) that harbored unique "clade-defining" substitutions. Similarity plots and bootscan mapping revealed a recombination breakpoint located in the 5'-UTR region of members of the RV-A8-like sublineage. Phylogenetic reconstruction revealed the distribution of clade D viruses in the Asia Pacific region and in Europe, underlining its worldwide distribution.
    Matched MeSH terms: Phylogeny
  19. Bozdayi G, Altay A, Yahiro T, Ahmed S, Meral M, Dogan B, et al.
    Arch Virol, 2016 Oct;161(10):2879-84.
    PMID: 27444180 DOI: 10.1007/s00705-016-2986-5
    This study was done to understand the dynamics of rotavirus genotype distribution in Turkish children. Samples were collected from January 2006 through August 2011 from children at a hospital in Ankara. Rotavirus was detected in 28 % (241/889) of the samples. Genotype G9P[8] was predominant (28 %), followed by G1P[8] (16.3 %) and G2P[8] (15.9 %). G9 was absent in the samples from 2006 and 2007 and then re-emerged in 2008 and increased gradually. Phylogenetic analysis showed that Turkish G9 rotaviruses of the present study formed a sublineage with strains from Italy and Ethiopia, possibly indicating spread of a clone in these countries.
    Matched MeSH terms: Phylogeny
  20. Zainathan SC, Carson J, Crane MS, Williams LM, Hoad J, Moody NJ, et al.
    Arch Virol, 2017 03;162(3):625-634.
    PMID: 27807656 DOI: 10.1007/s00705-016-3132-0
    In an attempt to determine whether or not genetic variants of the Tasmanian strain of Atlantic salmon aquareovirus (TSRV) exist, 14 isolates of TSRV, originating from various locations in Tasmania, covering a 20-year period (1990-2010), obtained from various host species and tissues, and isolated on different cell lines, were selected for this study. Two categories, termed "typical" and "atypical", of variants of TSRV were identified based on preliminary genotypic and phenotypic characterization carried out on these 14 different isolates. In addition, electron microscopic examination indicated the existence of at least three variants based on viral particle size. Finally, this study demonstrated the existence of at least one new variant of TSRV isolates, other than the more commonly isolated typical TSRV isolates, in farmed Tasmanian Atlantic salmon.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links