Displaying publications 121 - 140 of 163 in total

Abstract:
Sort:
  1. Shettima A, Ishak IH, Lau B, Abu Hasan H, Miswan N, Othman N
    PLoS Negl Trop Dis, 2023 Sep;17(9):e0011604.
    PMID: 37721966 DOI: 10.1371/journal.pntd.0011604
    Synthetic insecticides are the primary vector control method used globally. However, the widespread use of insecticides is a major cause of insecticide-resistance in mosquitoes. Hence, this study aimed at elucidating permethrin and temephos-resistant protein expression profiles in Ae. aegypti using quantitative proteomics. In this study, we evaluated the susceptibility of Ae. aegypti from Penang Island dengue hotspot and non-hotspot against 0.75% permethrin and 31.25 mg/l temephos using WHO bioassay method. Protein extracts from the mosquitoes were then analysed using LC-ESI-MS/MS for protein identification and quantification via label-free quantitative proteomics (LFQ). Next, Perseus 1.6.14.0 statistical software was used to perform differential protein expression analysis using ANOVA and Student's t-test. The t-test selected proteins with≥2.0-fold change (FC) and ≥2 unique peptides for gene expression validation via qPCR. Finally, STRING software was used for functional ontology enrichment and protein-protein interactions (PPI). The WHO bioassay showed resistance with 28% and 53% mortalities in adult mosquitoes exposed to permethrin from the hotspot and non-hotspot areas. Meanwhile, the susceptibility of Ae. aegypti larvae revealed high resistance to temephos in hotspot and non-hotspot regions with 80% and 91% mortalities. The LFQ analyses revealed 501 and 557 (q-value <0.05) differentially expressed proteins in adults and larvae Ae. aegypti. The t-test showed 114 upregulated and 74 downregulated proteins in adult resistant versus laboratory strains exposed to permethrin. Meanwhile, 13 upregulated and 105 downregulated proteins were observed in larvae resistant versus laboratory strains exposed to temephos. The t-test revealed the upregulation of sodium/potassium-dependent ATPase β2 in adult permethrin resistant strain, H15 domain-containing protein, 60S ribosomal protein, and PB protein in larvae temephos resistant strain. The downregulation of troponin I, enolase phosphatase E1, glucosidase 2β was observed in adult permethrin resistant strain and tubulin β chain in larvae temephos resistant strain. Furthermore, the gene expression by qPCR revealed similar gene expression patterns in the above eight differentially expressed proteins. The PPI of differentially expressed proteins showed a p-value at <1.0 x 10-16 in permethrin and temephos resistant Ae. aegypti. Significantly enriched pathways in differentially expressed proteins revealed metabolic pathways, oxidative phosphorylation, carbon metabolism, biosynthesis of amino acids, glycolysis, and citrate cycle. In conclusion, this study has shown differentially expressed proteins and highlighted upregulated and downregulated proteins associated with insecticide resistance in Ae. aegypti. The validated differentially expressed proteins merit further investigation as a potential protein marker to monitor and predict insecticide resistance in field Ae. aegypti. The LC-MS/MS data were submitted into the MASSIVE database with identifier no: MSV000089259.
  2. Qamruddin RM, Safferi RS, Mohamed Ismail Z, Salleh MS, Abd Hamid MNH, Frederic Ng VER, et al.
    PLoS Negl Trop Dis, 2023 Aug;17(8):e0011569.
    PMID: 37585486 DOI: 10.1371/journal.pntd.0011569
    Not all pit viper species are present in every state of Malaysia and their distribution varies according to altitude. There is limited information on pit viper bite incidence and its geographical distribution. This was a cross-sectional study of confirmed pit viper bite cases referred to Remote Envenomation Consultancy Services (RECS) from January 2017 to December 2020. Data was collected following the approval of institutional research ethics committee. Universal sampling methods were used. Confirmed pit viper bite cases in each state, geographical location and the antivenom used were reported. A total of 523 confirmed pit viper bite injuries occurred over the 4-year study period. The majority were Malaysians, male and young adults. Most were non-occupational related (83.9%) and involved the upper limbs (46.8%). The commonest pit viper species involved was Trimeresurus purpureomaculatus (23.7%). Green pit viper antivenom (GPAV) was the most frequent antivenom used (n = 51) with the majority of patients requiring only one dose (3 vials). This study provides a better appreciation of indigenous pit viper species distribution for each state and reflects the requirement of appropriate antivenom to be stocked in each state or district hospital.
  3. Impoinvil DE, Ooi MH, Diggle PJ, Caminade C, Cardosa MJ, Morse AP, et al.
    PLoS Negl Trop Dis, 2013;7(8):e2334.
    PMID: 23951373 DOI: 10.1371/journal.pntd.0002334
    BACKGROUND: Japanese encephalitis (JE) is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE) cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control.

    METHODOLOGY/PRINCIPAL FINDINGS: Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years) and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI) were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month), minimum temperature (lag 6-months) and SOI (lag 6-months) were positively associated with JE cases.

    CONCLUSIONS/SIGNIFICANCE: This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects are ignored.

  4. Hussin A, Nor Rahim MY, Dalusim F, Shahidan MA, Nathan S, Ibrahim N
    PLoS Negl Trop Dis, 2023 Oct;17(10):e0011696.
    PMID: 37844130 DOI: 10.1371/journal.pntd.0011696
    INTRODUCTION: Melioidosis is a deadly endemic disease in northern Australia and Southeast Asia, including Sabah, Malaysia, which is caused by the bacterium Burkholderia pseudomallei. It contributes to high fatality rates, mainly due to misdiagnosis leading to the wrong treatment being administered to the patients. Local epidemiology and data on clinical features could assist clinicians during diagnosis and treatment. However, these details are still scarce, particularly in Sabah.

    METHODS: A retrospective study of 246 culture-confirmed melioidosis cases in Queen Elizabeth Hospital, Sabah, Malaysia was performed between 2016 and 2018. The epidemiological data and clinical and laboratory findings were extracted and analysed.

    RESULTS: The annual incidence of culture-confirmed melioidosis cases was estimated to be 4.97 per 100,000 people. The mean age of the patients was 50±15 years. Males and members of the Kadazan-Dusun ethnic group accounted for the majority of the melioidosis cases. The odds ratio analysis indicated that bacteraemic melioidosis in this region was significantly associated with fever (76%), and patients having at least one underlying illness (43%), including diabetes mellitus (32%). Sixty-eight patients (28%) succumbed to melioidosis. Contrary to what is known regarding factors that promote bacteraemic melioidosis, neither patients with fever nor patients with at least one comorbid disease, including diabetes mellitus, were significantly associated with death from melioidosis. There was no statistically significant difference between patients without comorbidities (24, 27%) and those with at least one comorbid disease (26, 25%), including diabetes mellitus (18, 23%). The odds ratios indicate that melioidosis mortality in this region is related to patients showing respiratory organ-associated symptoms (29%), bacteraemia (30%), and septic shock (47%). Burkholderia pseudomallei isolates in this study were highly susceptible to ceftazidime (100%), imipenem (100%), and trimethoprim-sulfamethoxazole (98%).

    CONCLUSIONS: Information obtained from this study can be used by clinicians to recognise individuals with the highest risk of acquiring melioidosis, estimate an accurate prognosis, and provide effective treatment for melioidosis patients to reduce death from melioidosis.

  5. Syafruddin D, Lestari YE, Permana DH, Asih PBS, St Laurent B, Zubaidah S, et al.
    PLoS Negl Trop Dis, 2020 Jul;14(7):e0008385.
    PMID: 32614914 DOI: 10.1371/journal.pntd.0008385
    Anopheles sundaicus s.l. is an important malaria vector primarily found in coastal landscapes of western and central Indonesia. The species complex has a wide geographical distribution in South and Southeast Asia and exhibits ecological and behavioural variability over its range. Studies on understanding the distribution of different members in the complex and their bionomics related to malaria transmission might be important guiding more effective vector intervention strategies. Female An. sundaicus s.l. were collected from seven provinces, 12 locations in Indonesia representing Sumatra: North Sumatra, Bangka-Belitung, South Lampung, and Bengkulu; in Java: West Java; and the Lesser Sunda Islands: West Nusa Tenggara and East Nusa Tenggara provinces. Sequencing of ribosomal DNA ITS2 gene fragments and two mitochondrial DNA gene markers, COI and cytb, enabled molecular identification of morphologically indistinguishable members of the complex. Findings allowed inference on the distribution of the An. sundaicus s.l. present in Indonesia and further illustrate the phylogenetic relationships of An. epiroticus within the complex. A total of 370 An. sundaicus s.l specimens were analysed for the ITS2 fragment. The ITS2 sequence alignment revealed two consistent species-specific point mutations, a T>C transition at base 479 and a G>T transversion at base 538 that differentiated five haplotypes: TG, CG, TT, CT, and TY. The TG haplotype matched published An. epiroticus-indicative sequences from Thailand, Vietnam and peninsular Malaysia. The previously described insertion event (base 603) was observed in all identified specimens. Analysis of the COI and cytb genes revealed no consistent nucleotide variations that could definitively distinguish An. epiroticus from other members in the Sundaicus Complex. The findings indicate and support the existence of An. epiroticus in North Sumatra and Bangka-Belitung archipelago. Further studies are recommended to determine the full distributional extent of the Sundaicus complex in Indonesia and investigate the role of these species in malaria transmission.
  6. Johari NA, Voon K, Toh SY, Sulaiman LH, Yap IKS, Lim PKC
    PLoS Negl Trop Dis, 2019 Nov;13(11):e0007889.
    PMID: 31730672 DOI: 10.1371/journal.pntd.0007889
    Dengue fever is endemic in Malaysia, contributing to significant economic and health burden in the country. Aedes aegypti and Ae. albopictus are the main vectors of the dengue virus (DENV), which circulates in sylvatic and human transmission cycles and has been present in Malaysia for decades. The study investigated the presence and distribution of DENV in urban localities in the Klang Valley, Peninsular Malaysia. A total of 364 Ae. aegypti and 1,025 Ae. albopictus larvae, and 10 Ae. aegypti and 42 Ae. albopictus adult mosquitoes were screened for the presence of DENV. In total, 31 (2.2%) samples were positive, of which 2 Ae. albopictus larvae were co-infected with two serotypes, one with DENV-2 and DENV-3 and the other with DENV-3 and DENV-4. Phylogenetic analysis determined that the isolates belonged to DENV-1 genotype I (1 Ae. aegypti adult), DENV-2 (1 Ae. albopictus larva), DENV-3 genotype V (3 Ae. aegypti larvae and 10 Ae. albopictus larvae) and DENV-4 genotype IV (6 Ae. aegypti larvae and 12 Ae. albopictus larvae), a sylvatic strain of DENV-4 which was most closely related with sylvatic strains isolated from arboreal mosquitoes and sentinel monkeys in Peninsular Malaysia in the 1970s. All four DENV serotypes were co-circulating throughout the study period. The detection of a sylvatic strain of DENV-4 in Ae. aegypti and Ae. albopictus mosquitoes in urban areas in Peninsular Malaysia highlights the susceptibility of these vectors to infection with sylvatic DENV. The infectivity and vector competence of these urban mosquitoes to this strain of the virus needs further investigation, as well as the possibility of the emergence of sylvatic virus into the human transmission cycle.
  7. Sahimin N, Lim YA, Ariffin F, Behnke JM, Lewis JW, Mohd Zain SN
    PLoS Negl Trop Dis, 2016 Nov;10(11):e0005110.
    PMID: 27806046 DOI: 10.1371/journal.pntd.0005110
    A cross-sectional study of intestinal parasitic infections amongst migrant workers in Malaysia was conducted. A total of 388 workers were recruited from five sectors including manufacturing, construction, plantation, domestic and food services. The majority were recruited from Indonesia (n = 167, 43.3%), followed by Nepal (n = 81, 20.9%), Bangladesh (n = 70, 18%), India (n = 47, 12.1%) and Myanmar (n = 23, 5.9.2%). A total of four nematode species (Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis and hookworms), one cestode (Hymenolepis nana) and three protozoan species (Entamoeba histolytica/dispar, Giardia sp. and Cryptosporidium spp.) were identified. High prevalence of infections with A. lumbricoides (43.3%) was recorded followed by hookworms (13.1%), E. histolytica/dispar (11.6%), Giardia sp. (10.8%), T. trichura (9.5%), Cryptosporodium spp. (3.1%), H. nana (1.8%) and E. vermicularis (0.5%). Infections were significantly influenced by socio-demographic (nationality), and environmental characteristics (length of working years in the country, employment sector and educational level). Up to 84.0% of migrant workers from Nepal and 83.0% from India were infected with intestinal parasites, with the ascarid nematode A. lumbricoides occurring in 72.8% of the Nepalese and 68.1% of the Indian population. In addition, workers with an employment history of less than a year or newly arrived in Malaysia were most likely to show high levels of infection as prevalence of workers infected with A. lumbricoides was reduced from 58.2% to 35.4% following a year's residence. These findings suggest that improvement is warranted in public health and should include mandatory medical screening upon entry into the country.
  8. Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004915.
    PMID: 27494405 DOI: 10.1371/journal.pntd.0004915
    BACKGROUND: Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated.

    METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines).

    CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

  9. Nealon J, Taurel AF, Capeding MR, Tran NH, Hadinegoro SR, Chotpitayasunondh T, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004918.
    PMID: 27532617 DOI: 10.1371/journal.pntd.0004918
    Dengue incidence has increased globally, but empirical burden estimates are scarce. Prospective methods are best-able to capture all severities of disease. CYD14 was an observer-blinded dengue vaccine study conducted in children 2-14 years of age in Indonesia, Malaysia, Thailand, the Philippines, and Vietnam. The control group received no vaccine and resembled a prospective, observational study. We calculated the rates of dengue according to different laboratory or clinical criteria to make inferences about dengue burden, and compared with rates reported in the passive surveillance systems to calculate expansion factors which describe under-reporting. Over 6,933 person-years of observation in the control group there were 319 virologically confirmed dengue cases, a crude attack rate of 4.6%/year. Of these, 92 cases (28.8%) were clinically diagnosed as dengue fever or dengue hemorrhagic fever by investigators and 227 were not, indicating that most symptomatic disease fails to satisfy existing case definitions. When examining different case definitions, there was an inverse relationship between clinical severity and observed incidence rates. CYD14's active surveillance system captured a greater proportion of symptomatic dengue than national passive surveillance systems, giving rise to expansion factors ranging from 0.5 to 31.7. This analysis showed substantial, unpredictable and variable under-reporting of symptomatic dengue, even within a controlled clinical trial environment, and emphasizes that burden estimates are highly sensitive to case definitions. These data will assist in generating disease burden estimates and have important policy implications when considering the introduction and health economics of dengue prevention and control interventions.
  10. Runge-Ranzinger S, Kroeger A, Olliaro P, McCall PJ, Sánchez Tejeda G, Lloyd LS, et al.
    PLoS Negl Trop Dis, 2016 Sep;10(9):e0004916.
    PMID: 27653786 DOI: 10.1371/journal.pntd.0004916
    BACKGROUND: Dengue is an increasingly incident disease across many parts of the world. In response, an evidence-based handbook to translate research into policy and practice was developed. This handbook facilitates contingency planning as well as the development and use of early warning and response systems for dengue fever epidemics, by identifying decision-making processes that contribute to the success or failure of dengue surveillance, as well as triggers that initiate effective responses to incipient outbreaks.

    METHODOLOGY/PRINCIPAL FINDINGS: Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed.

    CONCLUSIONS/SIGNIFICANCE: Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak Prediction/ Detection and Outbreak Response seeks to provide countries with evidence-based best practices to justify the declaration of an outbreak and the mobilization of the resources required to implement an effective dengue contingency plan.

  11. Aranjani JM, Manuel A, Abdul Razack HI, Mathew ST
    PLoS Negl Trop Dis, 2021 Nov;15(11):e0009921.
    PMID: 34793455 DOI: 10.1371/journal.pntd.0009921
    Coronavirus Disease 2019 (COVID-19), during the second wave in early 2021, has caused devastating chaos in India. As daily infection rates rise alarmingly, the number of severe cases has increased dramatically. The country has encountered health infrastructure inadequacy and excessive demand for hospital beds, drugs, vaccines, and oxygen. Adding more burden to such a challenging situation, mucormycosis, an invasive fungal infection, has seen a sudden surge in patients with COVID-19. The rhino-orbital-cerebral form is the most common type observed. In particular, approximately three-fourths of them had diabetes as predisposing comorbidity and received corticosteroids to treat COVID-19. Possible mechanisms may involve immune and inflammatory processes. Diabetes, when coupled with COVID-19-induced systemic immune change, tends to cause decreased immunity and an increased risk of secondary infections. Since comprehensive data on this fatal opportunistic infection are evolving against the backdrop of a major pandemic, prevention strategies primarily involve managing comorbid conditions in high-risk groups. The recommended treatment strategies primarily included surgical debridement and antifungal therapy using Amphotericin B and selected azoles. Several India-centric clinical guidelines have emerged to rightly diagnose the infection, characterise the clinical presentation, understand the pathogenesis involved, and track the disease course. Code Mucor is the most comprehensive one, which proposes a simple but reliable staging system for the rhino-orbital-cerebral form. A staging system has recently been proposed, and a dedicated registry has been started. In this critical review, we extensively analyse recent evidence and guidance on COVID-19-associated mucormycosis in India.
  12. Fu JYL, Chua CL, Abu Bakar AS, Vythilingam I, Wan Sulaiman WY, Alphey L, et al.
    PLoS Negl Trop Dis, 2023 Jun;17(6):e0011423.
    PMID: 37307291 DOI: 10.1371/journal.pntd.0011423
    BACKGROUND: Emerging arboviruses such as chikungunya and Zika viruses have unexpectedly caused widespread outbreaks in tropical and subtropical regions recently. Ross River virus (RRV) is endemic in Australia and has epidemic potential. In Malaysia, Aedes mosquitoes are abundant and drive dengue and chikungunya outbreaks. We assessed risk of an RRV outbreak in Kuala Lumpur, Malaysia by determining vector competence of local Aedes mosquitoes and local seroprevalence as a proxy of human population susceptibility.

    METHODOLOGY/PRINCIPAL FINDINGS: We assessed oral susceptibility of Malaysian Ae. aegypti and Ae. albopictus by real-time PCR to an Australian RRV strain SW2089. Replication kinetics in midgut, head and saliva were determined at 3 and 10 days post-infection (dpi). With a 3 log10 PFU/ml blood meal, infection rate was higher in Ae. albopictus (60%) than Ae. aegypti (15%; p<0.05). Despite similar infection rates at 5 and 7 log10 PFU/ml blood meals, Ae. albopictus had significantly higher viral loads and required a significantly lower median oral infectious dose (2.7 log10 PFU/ml) than Ae. aegypti (4.2 log10 PFU/ml). Ae. albopictus showed higher vector competence, with higher viral loads in heads and saliva, and higher transmission rate (RRV present in saliva) of 100% at 10 dpi, than Ae. aegypti (41%). Ae. aegypti demonstrated greater barriers at either midgut escape or salivary gland infection, and salivary gland escape. We then assessed seropositivity against RRV among 240 Kuala Lumpur inpatients using plaque reduction neutralization, and found a low rate of 0.8%.

    CONCLUSIONS/SIGNIFICANCE: Both Ae. aegypti and Ae. albopictus are susceptible to RRV, but Ae. albopictus displays greater vector competence. Extensive travel links with Australia, abundant Aedes vectors, and low population immunity places Kuala Lumpur, Malaysia at risk of an imported RRV outbreak. Surveillance and increased diagnostic awareness and capacity are imperative to prevent establishment of new arboviruses in Malaysia.

  13. Natasha JA, Yasmin AR, Sharma RSK, Nur-Fazila SH, Nur-Mahiza MI, Arshad SS, et al.
    PLoS Negl Trop Dis, 2023 Apr;17(4):e0011255.
    PMID: 37023172 DOI: 10.1371/journal.pntd.0011255
    Being a tropical country with a conducive environment for mosquitoes, mosquito-borne illnesses such as dengue, chikungunya, lymphatic filariasis, malaria, and Japanese encephalitis are prevalent in Malaysia. Recent studies reported asymptomatic infection of West Nile virus (WNV) in animals and humans, but none of the studies included mosquitoes, except for one report made half a century ago. Considering the scarcity of information, our study sampled mosquitoes near migratory bird stopover wetland areas of West Coast Malaysia located in the Kuala Gula Bird Sanctuary and Kapar Energy Venture, during the southward migration period in October 2017 and September 2018. Our previous publication reported that migratory birds were positive for WNV antibody and RNA. Using a nested RT-PCR analysis, WNV RNA was detected in 35 (12.8%) out of 285 mosquito pools consisting of 2,635 mosquitoes, most of which were Culex spp. (species). Sanger sequencing and phylogenetic analysis revealed that the sequences grouped within lineage 2 and shared 90.12%-97.01% similarity with sequences found locally as well as those from Africa, Germany, Romania, Italy, and Israel. Evidence of WNV in the mosquitoes substantiates the need for continued surveillance of WNV in Malaysia.
  14. Wang G, Fu R, Zhang L, Xue L, Al-Mahdi AY, Xie X, et al.
    PLoS Negl Trop Dis, 2023 Apr 21;17(4):e0011243.
    PMID: 37083859 DOI: 10.1371/journal.pntd.0011243
    Scrub typhus, caused by mite-borne Orientia tsutsugamushi (O. tsutsugamushi), is a major febrile disease in the Asia-Pacific region. The DNA load of O. tsutsugamushi in the blood was previously found to be significantly higher in patients with fatal disease than those with non-fatal disease and correlated with the duration of illness, presence of eschar, and hepatic enzyme levels. In this prospective observation study, we analyzed the association of bacterial DNA load with clinical features, disease severity, and genotype using real-time PCR targeting the 56 kDa TSA gene of O. tsutsugamushi in the blood samples of 117 surviving patients with scrub typhus who had not received appropriate antibiotic treatment. The median O. tsutsugamushi DNA load was 3.11×103 copies/mL (range, 44 to 3.3×106 copies/mL). The severity of patients was categorized as mild, moderate, and severe based on the number of dysfunctional organs, and no significant difference in O. tsutsugamushi DNA load was found among these groups. Patients infected with the Karp group showed a significantly higher O. tsutsugamushi DNA load than those in the Gilliam (P 
  15. Jeyaprakasam NK, Low VL, Pramasivan S, Liew JWK, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2023 Jun;17(6):e0011438.
    PMID: 37384790 DOI: 10.1371/journal.pntd.0011438
    BACKGROUND: The elimination of malaria in Southeast Asia has become more challenging as a result of rising knowlesi malaria cases. In addition, naturally occurring human infections with other zoonotic simian malaria caused by Plasmodium cynomolgi and Plasmodium inui adds another level of complexity in malaria elimination in this region. Unfortunately, data on vectors which are responsible for transmitting this zoonotic disease is very limited.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted longitudinal studies to investigate the entomological parameters of the simian malaria vectors and to examine the genetic diversity and evolutionary pattern of their simian Plasmodium. All the captured Anopheles mosquitoes were dissected to examine for the presence of oocysts, sporozoites and to determine the parous rate. Our study revealed that the Anopheles Leucosphyrus Group mosquitoes are highly potential competent vectors, as evidenced by their high rate of parity, survival and sporozoite infections in these mosquitoes. Thus, these mosquitoes represent a risk of human infection with zoonotic simian malaria in this region. Haplotype analysis on P. cynomolgi and P. inui, found in high prevalence in the Anopheles mosquitoes from this study, had shown close relationship between simian Plasmodium from the Anopheles mosquitoes with its vertebrate hosts. This directly signifies the ongoing transmission between the vector, macaques, and humans. Furthermore, population genetic analysis showed significant negative values which suggest that both Plasmodium species are undergoing population expansion.

    CONCLUSIONS/SIGNIFICANCE: With constant microevolutionary processes, there are potential for both P. inui and P. cynomolgi to emerge and spread as a major public health problem, following the similar trend of P. knowlesi. Therefore, concerted vector studies in other parts of Southeast Asia are warranted to better comprehend the transmission dynamics of this zoonotic simian malaria which eventually would aid in the implementation of effective control measures in a rapidly changing environment.

  16. Main BJ, Nicholson J, Winokur OC, Steiner C, Riemersma KK, Stuart J, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006524.
    PMID: 29927940 DOI: 10.1371/journal.pntd.0006524
    Zika virus (ZIKV) has emerged since 2013 as a significant global human health threat following outbreaks in the Pacific Islands and rapid spread throughout South and Central America. Severe congenital and neurological sequelae have been linked to ZIKV infections. Assessing the ability of common mosquito species to transmit ZIKV and characterizing variation in mosquito transmission of different ZIKV strains is important for estimating regional outbreak potential and for prioritizing local mosquito control strategies for Aedes and Culex species. In this study, we evaluated the laboratory vector competence of Aedes aegypti, Culex quinquefasciatus, and Culex tarsalis that originated in areas of California where ZIKV cases in travelers since 2015 were frequent. We compared infection, dissemination, and transmission rates by measuring ZIKV RNA levels in cohorts of mosquitoes that ingested blood meals from type I interferon-deficient mice infected with either a Puerto Rican ZIKV strain from 2015 (PR15), a Brazilian ZIKV strain from 2015 (BR15), or an ancestral Asian-lineage Malaysian ZIKV strain from 1966 (MA66). With PR15, Cx. quinquefasciatus was refractory to infection (0%, N = 42) and Cx. tarsalis was infected at 4% (N = 46). No ZIKV RNA was detected in saliva from either Culex species 14 or 21 days post feeding (dpf). In contrast, Ae. aegypti developed infection rates of 85% (PR15; N = 46), 90% (BR15; N = 20), and 81% (MA66; N = 85) 14 or 15 dpf. Although MA66-infected Ae. aegypti showed higher levels of ZIKV RNA in mosquito bodies and legs, transmission rates were not significantly different across virus strains (P = 0.13, Fisher's exact test). To confirm infectivity and measure the transmitted ZIKV dose, we enumerated infectious ZIKV in Ae. aegypti saliva using Vero cell plaque assays. The expectorated plaque forming units PFU varied by viral strain: MA66-infected expectorated 13±4 PFU (mean±SE, N = 13) compared to 29±6 PFU for PR15-infected (N = 13) and 35±8 PFU for BR15-infected (N = 6; ANOVA, df = 2, F = 3.8, P = 0.035). These laboratory vector competence results support an emerging consensus that Cx. tarsalis and Cx. quinquefasciatus are not vectors of ZIKV. These results also indicate that Ae. aegypti from California are efficient laboratory vectors of ancestral and contemporary Asian lineage ZIKV.
  17. Jayaraj VJ, Ng CW, Bulgiba A, Appannan MR, Rampal S
    PLoS Negl Trop Dis, 2022 Nov;16(11):e0010887.
    PMID: 36346816 DOI: 10.1371/journal.pntd.0010887
    Malaysia has reported 2.75 million cases and 31,485 deaths as of 30 December 2021. Underestimation remains an issue due to the underdiagnosis of mild and asymptomatic cases. We aimed to estimate the burden of COVID-19 cases in Malaysia based on an adjusted case fatality rate (aCFR). Data on reported cases and mortalities were collated from the Ministry of Health official GitHub between 1 March 2020 and 30 December 2021. We estimated the total and age-stratified monthly incidence rates, mortality rates, and aCFR. Estimated new infections were inferred from the age-stratified aCFR. The total estimated infections between 1 March 2020 and 30 December 2021 was 9,955,000-cases (95% CI: 6,626,000-18,985,000). The proportion of COVID-19 infections in ages 0-11, 12-17, 18-50, 51-65, and above 65 years were 19.9% (n = 1,982,000), 2.4% (n = 236,000), 66.1% (n = 6,577,000), 9.1% (n = 901,000), 2.6% (n = 256,000), respectively. Approximately 32.8% of the total population in Malaysia was estimated to have been infected with COVID-19 by the end of December 2021. These estimations highlight a more accurate infection burden in Malaysia. It provides the first national-level prevalence estimates in Malaysia that adjusted for underdiagnosis. Naturally acquired community immunity has increased, but approximately 68.1% of the population remains susceptible. Population estimates of the infection burden are critical to determine the need for booster doses and calibration of public health measures.
  18. Mattick J, Libro S, Bromley R, Chaicumpa W, Chung M, Cook D, et al.
    PLoS Negl Trop Dis, 2021 Oct;15(10):e0009838.
    PMID: 34705823 DOI: 10.1371/journal.pntd.0009838
    The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.
  19. Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006457.
    PMID: 29902183 DOI: 10.1371/journal.pntd.0006457
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysian Borneo, with reporting limited to clinical cases presenting to health facilities and scarce data on the true extent of transmission. Serological estimations of transmission have been used with other malaria species to garner information about epidemiological patterns. However, there are a distinct lack of suitable serosurveillance tools for this neglected disease.

    METHODOLOGY/PRINCIPAL FINDINGS: Using in silico tools, we designed and expressed four novel P. knowlesi protein products to address the distinct lack of suitable serosurveillance tools: PkSERA3 antigens 1 and 2, PkSSP2/TRAP and PkTSERA2 antigen 1. Antibody prevalence to these antigens was determined by ELISA for three time-points post-treatment from a hospital-based clinical treatment trial in Sabah, East Malaysia (n = 97 individuals; 241 total samples for all time points). Higher responses were observed for the PkSERA3 antigen 2 (67%, 65/97) across all time-points (day 0: 36.9% 34/92; day 7: 63.8% 46/72; day 28: 58.4% 45/77) with significant differences between the clinical cases and controls (n = 55, mean plus 3 SD) (day 0 p<0.0001; day 7 p<0.0001; day 28 p<0.0001). Using boosted regression trees, we developed models to classify P. knowlesi exposure (cross-validated AUC 88.9%; IQR 86.1-91.3%) and identified the most predictive antibody responses.

    CONCLUSIONS/SIGNIFICANCE: The PkSERA3 antigen 2 had the highest relative variable importance in all models. Further validation of these antigens is underway to determine the specificity of these tools in the context of multi-species infections at the population level.

  20. Fornace KM, Herman LS, Abidin TR, Chua TH, Daim S, Lorenzo PJ, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006432.
    PMID: 29902171 DOI: 10.1371/journal.pntd.0006432
    BACKGROUND: Primarily impacting poor, rural populations, the zoonotic malaria Plasmodium knowlesi is now the main cause of human malaria within Malaysian Borneo. While data is increasingly available on symptomatic cases, little is known about community-level patterns of exposure and infection. Understanding the true burden of disease and associated risk factors within endemic communities is critical for informing evidence-based control measures.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted comprehensive surveys in three areas where P. knowlesi transmission is reported: Limbuak, Pulau Banggi and Matunggung, Kudat, Sabah, Malaysia and Bacungan, Palawan, the Philippines. Infection prevalence was low with parasites detected by PCR in only 0.2% (4/2503) of the population. P. knowlesi PkSERA3 ag1 antibody responses were detected in 7.1% (95% CI: 6.2-8.2%) of the population, compared with 16.1% (14.6-17.7%) and 12.6% (11.2-14.1%) for P. falciparum and P. vivax. Sero-prevalence was low in individuals <10 years old for P. falciparum and P. vivax consistent with decreased transmission of non-zoonotic malaria species. Results indicated marked heterogeneity in transmission intensity between sites and P. knowlesi exposure was associated with agricultural work (OR 1.63; 95% CI 1.07-2.48) and higher levels of forest cover (OR 2.40; 95% CI 1.29-4.46) and clearing (OR 2.14; 95% CI 1.35-3.40) around houses. Spatial patterns of P. knowlesi exposure differed from exposure to non-zoonotic malaria and P. knowlesi exposed individuals were younger on average than individuals exposed to non-zoonotic malaria.

    CONCLUSIONS/SIGNIFICANCE: This is the first study to describe serological exposure to P. knowlesi and associated risk factors within endemic communities. Results indicate community-level patterns of infection and exposure differ markedly from demographics of reported cases, with higher levels of exposure among women and children. Further work is needed to understand these variations in risk across a wider population and spatial scale.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links