Displaying publications 121 - 123 of 123 in total

Abstract:
Sort:
  1. Azimahtol Hawariah Lope Pihie, Embun Naim
    Malays J Reprod Health, 1983 Dec;1(2):176-80.
    PMID: 12313336
    Matched MeSH terms: Estrogens
  2. Vilhena-Franco T, Mecawi AS, Elias LL, Antunes-Rodrigues J
    J Endocrinol, 2016 Nov;231(2):167-180.
    PMID: 27613338
    Water deprivation (WD) induces changes in plasma volume and osmolality, which in turn activate several responses, including thirst, the activation of the renin-angiotensin system (RAS) and vasopressin (AVP) and oxytocin (OT) secretion. These systems seem to be influenced by oestradiol, as evidenced by the expression of its receptor in brain areas that control fluid balance. Thus, we investigated the effects of oestradiol treatment on behavioural and neuroendocrine changes of ovariectomized rats in response to WD. We observed that in response to WD, oestradiol treatment attenuated water intake, plasma osmolality and haematocrit but did not change urinary volume or osmolality. Moreover, oestradiol potentiated WD-induced AVP secretion, but did not alter the plasma OT or angiotensin II (Ang II) concentrations. Immunohistochemical data showed that oestradiol potentiated vasopressinergic neuronal activation in the lateral magnocellular PVN (PaLM) and supraoptic (SON) nuclei but did not induce further changes in Fos expression in the median preoptic nucleus (MnPO) or subfornical organ (SFO) or in oxytocinergic neuronal activation in the SON and PVN of WD rats. Regarding mRNA expression, oestradiol increased OT mRNA expression in the SON and PVN under basal conditions and after WD, but did not induce additional changes in the mRNA expression for AVP in the SON or PVN. It also did not affect the mRNA expression of RAS components in the PVN. In conclusion, our results show that oestradiol acts mainly on the vasopressinergic system in response to WD, potentiating vasopressinergic neuronal activation and AVP secretion without altering AVP mRNA expression.
    Matched MeSH terms: Estrogens/therapeutic use*
  3. Matejcic M, de Batlle J, Ricci C, Biessy C, Perrier F, Huybrechts I, et al.
    Int J Cancer, 2017 Mar 15;140(6):1246-1259.
    PMID: 27905104 DOI: 10.1002/ijc.30536
    Epidemiological studies have reported inconsistent findings for the association between B vitamins and breast cancer (BC) risk. We investigated the relationship between biomarkers of folate and vitamin B12 and the risk of BC in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Plasma concentrations of folate and vitamin B12 were determined in 2,491 BC cases individually matched to 2,521 controls among women who provided baseline blood samples. Multivariable logistic regression models were used to estimate odds ratios by quartiles of either plasma B vitamin. Subgroup analyses by menopausal status, hormone receptor status of breast tumors (estrogen receptor [ER], progesterone receptor [PR] and human epidermal growth factor receptor 2 [HER2]), alcohol intake and MTHFR polymorphisms (677C > T and 1298A > C) were also performed. Plasma levels of folate and vitamin B12 were not significantly associated with the overall risk of BC or by hormone receptor status. A marginally positive association was found between vitamin B12 status and BC risk in women consuming above the median level of alcohol (ORQ4-Q1  = 1.26; 95% CI 1.00-1.58; Ptrend  = 0.05). Vitamin B12 status was also positively associated with BC risk in women with plasma folate levels below the median value (ORQ4-Q1  = 1.29; 95% CI 1.02-1.62; Ptrend  = 0.03). Overall, folate and vitamin B12 status was not clearly associated with BC risk in this prospective cohort study. However, potential interactions between vitamin B12 and alcohol or folate on the risk of BC deserve further investigation.
    Matched MeSH terms: Estrogens
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links