Displaying publications 121 - 124 of 124 in total

Abstract:
Sort:
  1. Mizutani Y, Iehata S, Mori T, Oh R, Fukuzaki S, Tanaka R
    Microbiologyopen, 2019 10;8(10):e890.
    PMID: 31168933 DOI: 10.1002/mbo3.890
    Arcobacter have been frequently detected in and isolated from bivalves, but there is very little information on the genus Arcobacter in the abalone, an important fishery resource. This study aimed to investigate the genetic diversity and abundance of bacteria from the genus Arcobacter in the Japanese giant abalone, Haliotis gigantea, using molecular methods such as Arcobacter-specific clone libraries and fluorescence in situ hybridization (FISH). Furthermore, we attempted to isolate the Arcobacter species detected. Twelve genotypes of clones were obtained from Arcobacter-specific clone libraries. These sequences are not classified with any other known Arcobacter species including pathogenic Arcobacter spp., A. butzleri, A. skirrowii, and A. cryaerophilus, commonly isolated or detected from bivalves. From the FISH analysis, we observed that ARC94F-positive cells, presumed to be Arcobacter, accounted for 6.96 ± 0.72% of all EUB338-positive cells. In the culture method, three genotypes of Arcobacter were isolated from abalones. One genotype had a similarity of 99.2%-100.0% to the 16S rRNA gene of Arcobacter marinus, while the others showed only 93.3%-94.3% similarity to other Arcobacter species. These data indicate that abalones carry Arcobacter as a common bacterial genus which includes uncultured species.
    Matched MeSH terms: Gastropoda/microbiology*
  2. Tanaka R, Cleenwerck I, Mizutani Y, Iehata S, Bossier P, Vandamme P
    Int J Syst Evol Microbiol, 2017 Aug;67(8):3050-3056.
    PMID: 28820118 DOI: 10.1099/ijsem.0.002080
    A Gram-negative, aerobic, polar-flagellated and rod-shaped, sometimes slightly curved bacterium, designated MA5T, was isolated from the gut of an abalone of the species Haliotis gigantea collected in Japan. Phylogenetic analyses based on 16S rRNA, gyrB, hsp60 and rpoB gene sequences placed strain MA5T in the genus Arcobacter in an independent phylogenetic line. Comparison of the 16S rRNA gene sequence of this strain with those of the type strains of the established Arcobacter species revealed A. nitrofigilis (95.1 %) as nearest neighbour. Strain MA5T grew optimally at 25 °C, pH 6.0 to 9.0 and in the presence of 2 to 5 % (w/v) NaCl under both aerobic and microaerobic conditions. The predominant fatty acids found were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C12 : 0 3-OH and C18 : 1 ω7c. Menaquinone-6 (MK-6) and menaquinone-7 (MK-7) were found as the major respiratory quinones. The major polar lipids detected were phosphatidylethanolamine and phosphatidylglycerol. Strain MA5T could be differentiated phenotypically from the phylogenetic closest Arcobacter species by its ability to grow on 0.05 % safranin and 0.01 % 2,3,5-triphenyl tetrazolium chloride (TTC), but not on 0.5 % NaCl. The obtained DNA G+C content of strain MA5T was 27.9 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic distinctiveness of MA5T, this strain is considered to represent a novel species of the genus Arcobacter, for which the name Arcobacter haliotis sp. nov. is proposed. The type strain is MA5T (=LMG 28652T=JCM 31147T).
    Matched MeSH terms: Gastropoda/microbiology*
  3. Tanaka R, Cleenwerck I, Mizutani Y, Iehata S, Shibata T, Miyake H, et al.
    Int J Syst Evol Microbiol, 2015 Dec;65(12):4388-4393.
    PMID: 26354496 DOI: 10.1099/ijsem.0.000586
    Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).
    Matched MeSH terms: Gastropoda/microbiology*
  4. Haydar Ali Tajuddin A, Kamaruddin N, Sukor N, Azizan EA, Omar AM
    J Endocr Soc, 2020 Dec 01;4(12):bvaa157.
    PMID: 33241169 DOI: 10.1210/jendso/bvaa157
    Estrogen (17β-estradiol or E2) is a crucial regulator of the synthesis and secretion of pituitary reproductive hormones luteinizing hormone, follicle-stimulating hormone, and prolactin. In this review, we summarize the role of estrogen receptors in nonfunctioning pituitary neuroendocrine tumors (NF-Pitnets), focusing on immunoexpression and gonadotroph cell proliferation and apoptosis. Gonadotroph tumors are the most common subtype of NF-Pitnets. Two major estrogen receptor (ER) isoforms expressed in the pituitary are estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Overall, estrogen actions are mostly exerted through the ERα isoform on the pituitary. The G protein-coupled estrogen receptor (GPER) located at the plasma membrane may contribute to nongenomic effects of estrogen. Nuclear immunoreactivity for ERα and ERβ was highest among gonadotroph and null cell tumors. Silent corticotroph tumors are the least immunoreactive for both receptors. A significantly elevated ERα expression was observed in macroadenomas compared with microadenomas. ERα and ERβ may act in opposite directions to regulate the Slug-E-cadherin pathway and to affect invasiveness of NF-Pitnets. In the cellular pathway, ERs regulate estrogen-induced proliferation and differentiation and impact several signaling pathways including the MAPK and PI3K/Akt pathway. Estrogen was the first-discovered inducer of pituitary tumor transforming gene 1 that was abundantly expressed in NF-Pitnets. ERα can be a potential biomarker for predicting tumor size and invasiveness as well as therapeutic target for NF-Pitnets. Selective estrogen receptor modulators or antiestrogen may represent as an alternative choice for the treatment of NF-Pitnets.
    Matched MeSH terms: Gastropoda
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links