Displaying publications 121 - 140 of 437 in total

Abstract:
Sort:
  1. Ibrahim MA, Yusof MS, Amin NM
    Molecules, 2014 Apr 22;19(4):5191-204.
    PMID: 24759076 DOI: 10.3390/molecules19045191
    Thiourea derivatives display a broad spectrum of applications in chemistry, various industries, medicines and various other fields. Recently, different thiourea derivatives have been synthesized and explored for their anti-microbial properties. In this study, four carbonyl thiourea derivatives were synthesized and characterized, and then further tested for their anti-amoebic properties on two potential pathogenic species of Acanthamoeba, namely A. castellanii (CCAP 1501/2A) and A. polyphaga (CCAP 1501/3A). The results indicate that these newly-synthesized thiourea derivatives are active against both Acanthamoeba species. The IC50 values obtained were in the range of 2.39-8.77 µg·mL⁻¹ (9.47-30.46 µM) for A. castellanii and 3.74-9.30 µg·mL⁻¹ (14.84-31.91 µM) for A. polyphaga. Observations on the amoeba morphology indicated that the compounds caused the reduction of the amoeba size, shortening of their acanthopodia structures, and gave no distinct vacuolar and nuclear structures in the amoeba cells. Meanwhile, fluorescence microscopic observation using acridine orange and propidium iodide (AOPI) staining revealed that the synthesized compounds induced compromised-membrane in the amoeba cells. The results of this study proved that these new carbonyl thiourea derivatives, especially compounds M1 and M2 provide potent cytotoxic properties toward pathogenic Acanthamoeba to suggest that they can be developed as new anti-amoebic agents for the treatment of Acanthamoeba keratitis.
    Matched MeSH terms: Inhibitory Concentration 50
  2. Shakir RM, Ariffin A, Abdulla MA
    Molecules, 2014;19(3):3436-49.
    PMID: 24658568 DOI: 10.3390/molecules19033436
    Eleven new 2,6-di-tert-butyl-4-(5-aryl-1,3,4-oxadiazol-2-yl)phenols 5a-k were synthesized by reacting aryl hydrazides with 3,5-di-tert butyl 4-hydroxybenzoic acid in the presence of phosphorus oxychloride. The resulting compounds were characterized based on their IR, ¹H-NMR, ¹³C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to test the antioxidant properties of the compounds. Compounds 5f and 5j exhibited significant free-radical scavenging ability in both assays.
    Matched MeSH terms: Inhibitory Concentration 50
  3. Fadaeinasab M, Hadi AH, Kia Y, Basiri A, Murugaiyah V
    Molecules, 2013 Mar 25;18(4):3779-88.
    PMID: 23529036 DOI: 10.3390/molecules18043779
    Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (1), (E)-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylate (2), 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3) and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4). The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM) and BChE (IC50 = 61.72 µM), respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.
    Matched MeSH terms: Inhibitory Concentration 50
  4. Muhammad N, Din LB, Sahidin I, Hashim SF, Ibrahim N, Zakaria Z, et al.
    Molecules, 2012 Jul 30;17(8):9043-55.
    PMID: 22847143 DOI: 10.3390/molecules17089043
    A new resveratrol dimer, acuminatol (1), was isolated along with five known compounds from the acetone extract of the stem bark of Shorea acuminata. Their structures and stereochemistry were determined by spectroscopic methods, which included the extensive use of 2D NMR techniques. All isolated compounds were evaluated for their antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA) and the β-carotene-linoleic acid (BCLA) assays, and compared with those of the standards of ascorbic acid (AscA) and butylated hydroxytoluene (BHT). All compounds tested exhibited good to moderate antioxidant activity in the DPPH assay (IC₅₀s 0.84 to 10.06 mM) and displayed strong inhibition of β-carotene oxidation (IC₅₀s 0.10 to 0.22 mM). The isolated compounds were evaluated on the Vero cell line and were found to be non-cytotoxic with LC₅₀ values between 161 to 830 µM.
    Matched MeSH terms: Inhibitory Concentration 50
  5. Yehye WA, Abdul Rahman N, Alhadi AA, Khaledi H, Weng NS, Ariffin A
    Molecules, 2012 Jun 25;17(7):7645-65.
    PMID: 22732881 DOI: 10.3390/molecules17077645
    A computer-aided predictions of antioxidant activities were performed with the Prediction Activity Spectra of Substances (PASS) program. Antioxidant activity of compounds 1, 3, 4 and 5 were studied using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and lipid peroxidation assays to verify the predictions obtained by the PASS program. Compounds 3 and 5 showed more inhibition of DPPH stable free radical at 10⁻⁴ M than the well-known standard antioxidant, butylated hydroxytoluene (BHT). Compound 5 exhibited promising in vitro inhibition of Fe²⁺-induced lipid peroxidation of the essential egg yolk as a lipid-rich medium (83.99%, IC₅₀ 16.07 ± 3.51 μM/mL) compared to α-tocopherol (α-TOH, 84.6%, IC₅₀ 5.6 ± 1.09 μM/mL). The parameters for drug-likeness of these BHT analogues were also evaluated according to the Lipinski’s “rule-of-five” (RO5). All the BHT analogues were found to violate one of the Lipinski’s parameters (LogP > 5), even though they have been found to be soluble in protic solvents. The predictive polar surface area (PSA) and absorption percent (% ABS) data allow us to conclude that they could have a good capacity for penetrating cell membranes. Therefore, one can propose these new multipotent antioxidants (MPAOs) as potential antioxidants for tackling oxidative stress and lipid peroxidation processes.
    Matched MeSH terms: Inhibitory Concentration 50
  6. Syam S, Abdelwahab SI, Al-Mamary MA, Mohan S
    Molecules, 2012 May 25;17(6):6179-95.
    PMID: 22634834 DOI: 10.3390/molecules17066179
    Several chalcones were synthesized and their in vitro cytotoxicity against various human cell lines, including human breast adenocarcinoma cell line MCF-7, human lung adenocarcinoma cell line A549, human prostate cancer cell line PC3, human adenocarcinoma cell line HT-29 (colorectal cancer) and human normal liver cell line WRL-68 was evaluated. Most of the compounds being active cytotoxic agents, four of them with minimal IC₅₀ values were chosen and studied in detail with MCF-7 cells. The compounds 1, 5, 23, and 25 were capable in eliciting apoptosis in MCF-7 cells as shown by multiparameter cytotoxicity assay and caspase-3/7, -8, and -9 activities (p < 0.05). The ROS level showed 1.3-fold increase (p < 0.05) at the low concentrations used and thus it was concluded that the compounds increased the ROS level eventually leading to apoptosis in MCF-7 cells through intrinsic as well as extrinsic pathways.
    Matched MeSH terms: Inhibitory Concentration 50
  7. Saadawi S, Jalil J, Jasamai M, Jantan I
    Molecules, 2012;17(5):4824-35.
    PMID: 22538486 DOI: 10.3390/molecules17054824
    Acetylmelodorinol, chrysin and polycarpol, together with benzoic acid, benzoquinone and stigmasterol were isolated from the leaves of Mitrella kentii (Bl.) Miq. The compounds were evaluated for their ability to inhibit prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) production in human whole blood using a radioimmunoassay technique. Their inhibitory effect on platelet activating factor (PAF) receptor binding to rabbit platelet was determined using ³H-PAF as a ligand. Among the compounds tested, chrysin showed a strong dose-dependent inhibitory activity on PGE(2) production (IC₅₀ value of 25.5 µM), which might be due to direct inhibition of cyclooxygenase-2 (COX-2) enzymatic activity. Polycarpol, acetylmelodorinol and stigmasterol exhibited significant and concentration-dependent inhibitory effects on TXB₂ production with IC₅₀ values of 15.6, 19.1 and 19.4 µM, respectively, suggesting that they strongly inhibited COX-1 activity. Polycarpol and acetylmelodorinol showed strong dose-dependent inhibitory effects on PAF receptor binding with IC₅₀ values of 24.3 and 24.5 µM, respectively.
    Matched MeSH terms: Inhibitory Concentration 50
  8. Jalil J, Jantan I, Ghani AA, Murad S
    Molecules, 2012 Sep 10;17(9):10893-901.
    PMID: 22964504 DOI: 10.3390/molecules170910893
    The methanol extract of the leaves of Garcinia nervosa var. pubescens King, which showed strong inhibitory effects on platelet-activating factor (PAF) receptor binding, was subjected to bioassay-guided isolation to obtain a new biflavonoid, II-3,I-5, II-5,II-7,I-4',II-4'-hexahydroxy-(I-3,II-8)-flavonylflavanonol together with two known flavonoids, 6-methyl-4'-methoxyflavone and acacetin. The structures of the compounds were elucidated by spectroscopic methods. The compounds were evaluated for their ability to inhibit PAF receptor binding to rabbit platelets using ³H-PAF as a ligand. The biflavonoid and acacetin showed strong inhibition with IC₅₀ values of 28.0 and 20.4 µM, respectively. The results suggest that these compounds could be responsible for the strong PAF antagonistic activity of the plant.
    Matched MeSH terms: Inhibitory Concentration 50
  9. Kavitha N, Noordin R, Kit-Lam C, Sasidharan S
    Molecules, 2012 Aug 02;17(8):9207-19.
    PMID: 22858841 DOI: 10.3390/molecules17089207
    The inhibitory effect of active fractions of Eurycoma longifolia (E. longifolia) root, namely TAF355 and TAF401, were evaluated against Toxoplasma gondii (T. gondii). In our previous study, we demonstrated that T. gondii was susceptible to TAF355 and TAF401 with IC₅₀ values of 1.125 µg/mL and 1.375 µg/mL, respectively. Transmission (TEM) and scanning electron microscopy (SEM) observations were used to study the in situ antiparasitic activity at the IC₅₀ value. Clindamycin was used as positive control. SEM examination revealed cell wall alterations with formation of invaginations followed by completely collapsed cells compared to the normal T. gondii cells in response to the fractions. The main abnormality noted via TEM study was decreased cytoplasmic volume, leaving a state of structural disorganization within the cell cytoplasm and destruction of its organelles as early as 12 h of treatment, which indicated of rapid antiparasitic activity of the E. longifolia fractions. The significant antiparasitic activity shown by the TAF355 and TAF401 active fractions of E. longifolia suggests their potential as new anti-T. gondii agent candidates.
    Matched MeSH terms: Inhibitory Concentration 50
  10. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Amin MA, et al.
    Molecules, 2012;17(5):6071-82.
    PMID: 22614861 DOI: 10.3390/molecules17056071
    One of the most promising plants in biological screening test results of thirteen Artocarpus species was Artocarpus obtusus FM Jarrett and detailed phytochemical investigation of powdered dried bark of the plant has led to the isolation and identification of three xanthones; pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2) and pyranocycloartobiloxanthone B (3). These compounds were screened for antioxidant, antimicrobial and tyrosinase inhibitory activities. Pyranocycloartobiloxanthone A (1) exhibited a strong free radical scavenger towards DPPH free radicals with IC50 value of 2 µg/mL with prominent discoloration observed in comparison with standard ascorbic acid, α-tocopherol and quercetin, The compound also exhibited antibacterial activity against methicillin resistant Staphylococcus aureus (ATCC3359) and Bacillus subtilis (clinically isolated) with inhibition zone of 20 and 12 mm, respectively. However the other two xanthones were found to be inactive. For the tyrosinase inhibitory activity, again compound (1) displayed strong activity comparable with the standard kojic acid.
    Matched MeSH terms: Inhibitory Concentration 50
  11. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    Molecules, 2012;17(3):2939-54.
    PMID: 22402764 DOI: 10.3390/molecules17032939
    Despite the progress in colon cancer treatment, relapse is still a major obstacle. Hence, new drugs or drug combinations are required in the battle against colon cancer. α-Mangostin and betulinic acid (BA) are cytotoxic compounds that work by inducing the mitochondrial apoptosis pathway, and cisplatin is one of the most potent broad spectrum anti-tumor agents. This study aims to investigate the enhancement of BA cytotoxicity by α-mangostin, and the cytoprotection effect of α-mangostin and BA on cisplatin-induced cytotoxicity on HCT 116 human colorectal carcinoma cells. Cytotoxicity was investigated by the XTT cell proliferation test, and the apoptotic effects were investigated on early and late markers including caspases-3/7, mitochondrial membrane potential, cytoplasmic shrinkage, and chromatin condensation. The effect of α-mangostin on four signalling pathways was also investigated by the luciferase assay. α-Mangostin and BA were more cytotoxic to the colon cancer cells than to the normal colonic cells, and both compounds showed a cytoprotective effect against cisplatin-induced cytotoxicity. On the other hand, α-mangostin enhanced the cytotoxic and apoptotic effects of BA. Combination therapy hits multiple targets, which may improve the overall response to the treatment, and may reduce the likelihood of developing drug resistance by the tumor cells. Therefore, α-mangostin and BA may provide a novel combination for the treatment of colorectal carcinoma. The cytoprotective effect of the compounds against cisplatin-induced cytotoxicity may find applications as chemopreventive agents against carcinogens, irradiation and oxidative stress, or to neutralize cisplatin side effects.
    Matched MeSH terms: Inhibitory Concentration 50
  12. Nithianantham K, Shyamala M, Chen Y, Latha LY, Jothy SL, Sasidharan S
    Molecules, 2011 Dec 06;16(12):10134-45.
    PMID: 22146374 DOI: 10.3390/molecules161210134
    BACKGROUND AND AIM: Clitoria ternatea, a medicinal herb native to tropical equatorial Asia, is commonly used in folk medicine to treat various diseases. The aim of the present study is to evaluate the hepatoprotective and antioxidant activity of C. ternatea against experimentally induced liver injury.

    METHODS: The antioxidant property of methanolic extract (ME) of C. ternatea leaf was investigated by employing an established in vitro antioxidant assay. The hepatoprotective effect against paracetamol-induced liver toxicity in mice of ME of C. ternatea leaf was also studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and billirubin along with histopathological analysis.

    RESULTS: The amount of total phenolics and flavonoids were estimated to be 358.99 ± 6.21 mg/g gallic acid equivalent and 123.75 ± 2.84 mg/g catechin equivalent, respectively. The antioxidant activity of C. ternatea leaf extract was 67.85% at a concentration of 1 mg/mL and was also concentration dependant, with an IC(50) value of 420.00 µg/mL. The results of the paracetamol-induced liver toxicity experiments showed that mice treated with the ME of C. ternatea leaf (200 mg/kg) showed a significant decrease in ALT, AST, and bilirubin levels, which were all elevated in the paracetamol group (p < 0.01). C. ternatea leaf extract therapy also protective effects against histopathological alterations. Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen.

    CONCLUSIONS: The current study confirmed the hepatoprotective effect of C. ternatea leaf extract against the model hepatotoxicant paracetamol. The hepatoprotective action is likely related to its potent antioxidative activity.

    Matched MeSH terms: Inhibitory Concentration 50
  13. Malek SN, Lee GS, Hong SL, Yaacob H, Wahab NA, Faizal Weber JF, et al.
    Molecules, 2011 May 31;16(6):4539-48.
    PMID: 21629182 DOI: 10.3390/molecules16064539
    Investigations on the cytotoxic effects of the crude methanol and fractionated extracts (hexane, ethyl acetate) C. mangga against six human cancer cell lines, namely the hormone-dependent breast cell line (MCF-7), nasopharyngeal epidermoid cell line (KB), lung cell line (A549), cervical cell line (Ca Ski), colon cell lines (HCT 116 and HT-29), and one non-cancer human fibroblast cell line (MRC-5) were conducted using an in-vitro neutral red cytotoxicity assay. The crude methanol and fractionated extracts (hexane and ethyl acetate) displayed good cytotoxic effects against MCF-7, KB, A549, Ca Ski and HT-29 cell lines, but exerted no damage on the MRC-5 line. Chemical investigation from the hexane and ethyl acetate fractions resulted in the isolation of seven pure compounds, namely (E)-labda-8(17),12-dien-15,16-dial (1), (E)-15,16-bisnor-labda-8(17),11-dien-13-on (2), zerumin A (3), β-sitosterol, curcumin, demethoxycurcumin and bis-demethoxycurcumin. Compounds 1 and 3 exhibited high cytotoxic effects against all six selected cancer cell lines, while compounds 2 showed no anti-proliferative activity on the tested cell lines. Compound 1 also demonstrated strong cytotoxicity against the normal cell line MRC-5. This paper reports for the first time the cytotoxic activities of C. mangga extracts on KB, A549, Ca Ski, HT-29 and MRC-5, and the occurrence of compound 2 and 3 in C. mangga.
    Matched MeSH terms: Inhibitory Concentration 50
  14. Al-Qubaisi M, Rozita R, Yeap SK, Omar AR, Ali AM, Alitheen NB
    Molecules, 2011 Apr 06;16(4):2944-59.
    PMID: 21471934 DOI: 10.3390/molecules16042944
    Liver cancer has become one of the major types of cancer with high mortality and liver cancer is not responsive to the current cytotoxic agents used in chemotherapy. The purpose of this study was to examine the in vitro cytotoxicity of goniothalamin on human hepatoblastoma HepG2 cells and normal liver Chang cells. The cytotoxicity of goniothalamin against HepG2 and liver Chang cell was tested using MTT cell viability assay, LDH leakage assay, cell cycle flow cytometry PI analysis, BrdU proliferation ELISA assay and trypan blue dye exclusion assay. Goniothalamin selectively inhibited HepG2 cells [IC₅₀ = 4.6 (±0.23) µM in the MTT assay; IC₅₀ = 5.20 (±0.01) µM for LDH assay at 72 hours], with less sensitivity in Chang cells [IC₅₀ = 35.0 (±0.09) µM for MTT assay; IC₅₀ = 32.5 (±0.04) µM for LDH assay at 72 hours]. In the trypan blue dye exclusion assay, the Viability Indexes were 52 ± 1.73% for HepG2 cells and 62 ± 4.36% for Chang cells at IC₅₀ after 72 hours. Cytotoxicity of goniothalamin was related to inhibition of DNA synthesis, as revealed by the reduction of BrdU incorporation. At 72 hours, the lowest concentration of goniothalamin (2.3 µL) retained 97.6% of normal liver Chang cells proliferation while it reduced HepG2 cell proliferation to 19.8% as compared to control. Besides, goniothalamin caused accumulation of hypodiploid apoptosis and different degree of G2/M arrested as shown in cell cycle analysis by flow cytometry. Goniothalamin selectively killed liver cancer cell through suppression of proliferation and induction of apoptosis. These results suggest that goniothalamin shows potential cytotoxicity against hepatoblastoma HepG2 cells.
    Matched MeSH terms: Inhibitory Concentration 50
  15. Awang K, Azmi MN, Aun LI, Aziz AN, Ibrahim H, Nagoor NH
    Molecules, 2010 Nov;15(11):8048-59.
    PMID: 21063268 DOI: 10.3390/molecules15118048
    1'-(S)-1'-Acetoxychavicol acetate (ACA) isolated from the Malaysian ethno-medicinal plant Alpinia conchigera Griff. was investigated for its potential as an anticancer drug. In this communication, we describe the cytotoxic and apoptotic properties of ACA on five human tumour cell lines. Data from MTT cell viability assays indicated that ACA induced both time- and dose-dependent cytotoxicity on all tumour cell lines tested and had no adverse cytotoxic effects on normal cells. Total mortality of the entire tumour cell population was achieved within 30 hrs when treated with ACA at 40.0 µM concentration. Flow cytometric analysis for annexin-V and PI dual staining demonstrated that cell death occurred via apoptosis, followed by secondary necrosis. The apoptotic effects of ACA were confirmed via the DNA fragmentation assay, in which consistent laddering of genomic DNA was observed for all tumour cell lines after a 24 hrs post-treatment period at the IC(50) concentration of ACA. A cell cycle analysis using PI staining also demonstrated that ACA induced cell cycle arrest at the G(0)/G(1) phase, corresponding to oral tumour cell lines. In conclusion, ACA exhibits enormous potential for future development as a chemotherapeutic drug against various malignancies.
    Matched MeSH terms: Inhibitory Concentration 50
  16. Ismail S, Hanapi NA, Ab Halim MR, Uchaipichat V, Mackenzie PI
    Molecules, 2010 May 14;15(5):3578-92.
    PMID: 20657500 DOI: 10.3390/molecules15053578
    The effects of Andrographis paniculata and Orthosiphon stamineus extracts on the in vitro glucuronidation of 4-methylumbelliferone (4MU) by recombinant human UGTs, UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A10, UGT2B7 and UGT2B15 were determined. The potential inhibitory effects of both of the extracts on the activity of each of the UGT isoforms were investigated using 4MU as the substrate. Incubations contained UDP-glucuronic acid (UDPGA) as the cofactor, MgCl(2), cell lysate of respective isoform, and 4MU at the approximate apparent K(m) or S(50) value of each isoform. Final concentrations of Andrographis paniculata and Orthosiphon stamineus extracts used were 0.025, 0.25, 2.5, 25 and 50 microg/mL and 0.01, 0.10, 1.0, 10 and 50 microg/mL respectively. Both extracts variably inhibited the activity of most of the isoforms in a concentration dependent manner. Andrographis paniculata extract was the better inhibitor of all the isoforms studied (IC(50) 1.70 microg/mL for UGT1A3, 2.57 microg/mL for UGT1A8, 2.82 microg/mL for UGT2B7, 5.00 micorg/mL for UGT1A1, 5.66 microg/mL for UGT1A6, 9.88 microg/mL for UGT1A7 and 15.66 microg/mL for UGT1A10). Both extracts showed less than 70% inhibition of UGT2B15, so the IC(50) values were >50 microg/mL. The inhibition of human UGTs by Andrographis paniculata and Orthosiphon stamineus extracts in vitro suggests a potential for drug-herbal extract interactions in the therapeutic setting.
    Matched MeSH terms: Inhibitory Concentration 50
  17. Moharam BA, Jantan I, Ahmad Fb, Jalil J
    Molecules, 2010 Aug;15(8):5124-38.
    PMID: 20714290 DOI: 10.3390/molecules15085124
    Nine essential oils, hydrodistilled from different parts of five Goniothalamus species (G. velutinus Airy-Shaw, G. woodii Merr., G. clemensii Ban, G. tapis Miq. and G. tapisoides Mat Salleh) were evaluated for their ability to inhibit platelet aggregation in human whole blood using an electrical impedance method and their inhibitory effects on platelet activating factor (PAF) receptor binding with rabbit platelets using 3H-PAF as a ligand. The chemical composition of the oils was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The bark oil of G. velutinus was the most effective sample as it inhibited both arachidonic acid (AA) and ADP-induced platelet aggregation with IC(50) values of 93.6 and 87.7 microg/mL, respectively. Among the studied oils, the bark oils of G. clemensii, G. woodii, G. velutinus and the root oil of G. tapis showed significant inhibitory effects on PAF receptor binding, with IC(50 )values ranging from 3.5 to 10.5 microg/mL. The strong PAF antagonistic activity of the active oils is related to their high contents of sesquiterpenes and sesquiterpenoids, and the individual components in the oils could possibly produce a synergistic effect in the overall antiplatelet activity of the oils.
    Matched MeSH terms: Inhibitory Concentration 50
  18. Teh SS, Ee GC, Mah SH, Lim YM, Ahmad Z
    Molecules, 2013 Feb 04;18(2):1985-94.
    PMID: 23381024 DOI: 10.3390/molecules18021985
    The cytotoxic structure-activity relationships among a series of xanthone derivatives from Mesua beccariana, Mesua ferrea and Mesua congestiflora were studied. Eleven xanthone derivatives identified as mesuarianone (1), mesuasinone (2), mesuaferrin A (3), mesuaferrin B (4), mesuaferrin C (5), 6-deoxyjacareubin (6), caloxanthone C (7), macluraxanthone (8), 1,5-dihydroxyxanthone (9), tovopyrifolin C (10) and α-mangostin (11) were isolated from the three Mesua species. The human cancer cell lines tested were Raji, SNU-1, K562, LS-174T, SK-MEL-28, IMR-32, HeLa, Hep G2 and NCI-H23. Mesuaferrin A (3), macluraxanthone (8) and α-mangostin (11) showed strong cytotoxicities as they possess significant inhibitory effects against all the cell lines. The structure-activity relationship (SAR) study revealed that the diprenyl, dipyrano and prenylated pyrano substituent groups of the xanthone derivatives contributed towards the cytotoxicities.
    Matched MeSH terms: Inhibitory Concentration 50
  19. Mawa S, Jantan I, Husain K
    Molecules, 2016 Jan 05;21(1):9.
    PMID: 26742027 DOI: 10.3390/molecules21010009
    Three new triterpenoids; namely 28,28,30-trihydroxylupeol (1); 3,21,21,26-tetrahydroxy-lanostanoic acid (2) and dehydroxybetulinic acid (3) and seven known compounds; i.e., taraxerone (4); taraxerol (5); ethyl palmitate (6); herniarin (7); stigmasterol (8); ursolic acid (9) and acetyl ursolic acid (10) were isolated from the stem of Ficus aurantiaca Griff. The structures of the compounds were established by spectroscopic techniques. The compounds were evaluated for their inhibitory effects on polymorphonuclear leukocyte (PMN) chemotaxis by using the Boyden chamber technique and on human whole blood and neutrophil reactive oxygen species (ROS) production by using a luminol-based chemiluminescence assay. Among the compounds tested, compounds 1-4, 6 and 9 exhibited strong inhibition of PMN migration towards the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fMLP) with IC50 values of 6.8; 2.8; 2.5; 4.1; 3.7 and 3.6 μM, respectively, comparable to that of the positive control ibuprofen (6.7 μM). Compounds 2-4, 6, 7 and 9 exhibited strong inhibition of ROS production of PMNs with IC50 values of 0.9; 0.9; 1.3; 1.1; 0.5 and 0.8 μM, respectively, which were lower than that of aspirin (9.4 μM). The bioactive compounds might be potential lead molecules for the development of new immunomodulatory agents to modulate the innate immune response of phagocytes.
    Matched MeSH terms: Inhibitory Concentration 50
  20. Yusof KM, Makpol S, Jamal R, Harun R, Mokhtar N, Ngah WZ
    Molecules, 2015 Jun 03;20(6):10280-97.
    PMID: 26046324 DOI: 10.3390/molecules200610280
    Numerous bioactive compounds have cytotoxic properties towards cancer cells. However, most studies have used single compounds when bioactives may target different pathways and exert greater cytotoxic effects when used in combination. Therefore, the objective of this study was to determine the anti-proliferative effect of γ-tocotrienol (γ-T3) and 6-gingerol (6G) in combination by evaluating apoptosis and active caspase-3 in HT-29 and SW837 colorectal cancer cells. MTS assays were performed to determine the anti-proliferative and cytotoxicity effect of γ-T3 (0-150 µg/mL) and 6G (0-300 µg/mL) on the cells. The half maximal inhibitory concentration (IC50) value of 6G+ γ-T3 for HT-29 was 105 + 67 µg/mL and for SW837 it was 70 + 20 µg/mL. Apoptosis, active caspase-3 and annexin V FITC assays were performed after 24 h of treatment using flow cytometry. These bioactives in combination showed synergistic effect on HT-29 (CI: 0.89 ± 0.02,) and SW837 (CI: 0.79 ± 0.10) apoptosis was increased by 21.2% in HT-29 and 55.4% in SW837 (p < 0.05) after 24 h treatment, while normal hepatic WRL-68 cells were unaffected. Increased apoptosis by the combined treatments was also observed morphologically, with effects like cell shrinkage and pyknosis. In conclusion, although further studies need to be done, γ-T3 and 6G when used in combination act synergistically increasing cytotoxicity and apoptosis in cancer cells.
    Matched MeSH terms: Inhibitory Concentration 50
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links