Displaying publications 141 - 160 of 173 in total

Abstract:
Sort:
  1. Pereira, J.J., Hunt, J.C.R., Chan, J.C.L.
    ASM Science Journal, 2014;8(1):1-10.
    MyJurnal
    The role of science and technology (S&T) in preventing disasters and building resilience to climate change is featured in this paper, drawing primarily on the presentations and discussion of researchers, practitioners and policy makers from 31 institutions in 17 countries during the Workshop on Natural Disasters and Climate Change in Asia, held on 5–7 November 2012 in Bangi, Malaysia. Issues highlighted include advances in climate modelling and weather forecasts, with emphasis on information gaps; hazards and its cascading effects, focusing on current research and approaches; and the potential for land-based mitigation-adaptation strategies. Progress in mobilizing S&T to support disaster prevention and climate resilience is hindered by factors such as absence or lack of research, incomplete and non-existent scientific records, restricted access to data and capacity to innovate and transmit S&T, among others. The establishment of an Asian Network for Climate Science and Technology is proposed to provide and facilitate exchange of information and aid development of research co-ordination projects led by Asian researchers and possibly to act as a one-stop repository of global climate change related research too. The scope of the network would cover climate research with particular relevance to disaster resilience, including scientific capacity, which is all very distinct in Asia.
  2. Azlinda Abu Bakar, Sallehudin Sulaiman, Baharudin Omar, Rasadah Mat Ali
    ASM Science Journal, 2018;11(2):103-116.
    MyJurnal
    The adverse effects of prolonged and rampant usage of chemical insecticides in controlling the population of vector arthropod have caused the development of resistance among vector populations as well as non-target organism. Application of plant extracts could be alternative sources for mosquito control. The present study assessed larvicidal activities of methanol extracts of leaf and stem of Jacaranda mimosifolia Don (Family: Bignoniaceae), Melaleuca cajuputi Powell (Family: Myrtaceae), Tabebuia chrysantha (Jacq.) Nicholson (Family: Bignoniaceae), Tabebuia pallida (Lindl.) Miers (Family: Bignoniaceae) and Tabebuia rosea Toll (Family: Bignoniaceae) against dengue vectors, Aedes (Diptera: Culicidae) sp. Among plants tested, M. cajuputi exhibited the most effective with the highest mortality against Ae. aegypti and Ae. albopictus. Leaf extracts showed significantly higher larvicidal effects in relative to stem extracts. The findings also revealed that Ae. aegypti is the most susceptible compared to Ae. albopictus. LC50 values of M. cajuputi leaf extracts were 183.35mg/L and 191.82mg/L against Ae. aegypti and Ae. albopictus respectively. These studies suggest leaf extracts of M. cajuputi have moderate potential as larvicidal against vector larvae of Aedes mosquitoes.
  3. Sharifah, S.Y., Norsheila, F., Muladi
    ASM Science Journal, 2007;1(1):19-25.
    MyJurnal
    Orthogonal Frequency Division Multiplexing (OFDM) is a successful technique in wireless communication systems. Frequency offset in the OFDM system leads to loss of orthogonality among subcarriers which results in the occurrence of intercarrier interference (ICI). To improve the efficiency of bandwidth performance in the ICI self-cancellation scheme, frequency domain partial response signaling (PRS) was investigated. In this study, the integer polynomial partial response coefficients were exploited to enhance carrier-to-interference power ratio (CIR) in the OFDM system. CIR was enhanced up to 4.1 dB to 5 dB when the lengths of PRS polynomial, K was 2 and 5, respectively.
  4. Teh, G.B., Wong, Y.C., Tilley, R.D.
    ASM Science Journal, 2014;8(1):21-28.
    MyJurnal
    Co(II)-Ti(IV)-substituted magnetoplumbite-type (M-type) barium ferrite nanoparticles were synthesized via the sol-gel technique employing ethylene glycol as the gel precursor. Structural and magnetic properties were characterised via X-ray diffraction (XRD), high resolution transmission electron microscopy and superconducting quantum interference device magnetometry. The particle sizes of the M-type BaCoXTiXFe12-2XO19 (0.2 ≤  ≤ 1.0) were found to be 900 Å – 1500 Å. The XRD results confirmed that the Co(II)-Ti(IV) substituted ferrites in the range of 0.2 ≤  ≤ 1.0 substitution had the M-type ferrite as the dominant phase. The hysteresis loss per-cycle decreased with increasing Co(II)-Ti(IV) substitution in M-type ferrites which showed reduced values in coercivity and remnant magnetisation with moderate effect on the saturation magnetisation.
  5. Devaraj, V., Zairossani, M.N.
    ASM Science Journal, 2012;6(1):15-21.
    MyJurnal
    Malaysia is the world’s top manufacturer of examination and surgical natural rubber (NR) gloves, exported mainly to the USA and Europe. The glove manufacturing process yields effluent which must be treated to comply with the stringent regulatory requirements imposed by the Malaysian Department of Environment. To make glove manufacturing an eco-friendly process, efforts are geared towards minimizing and utilizing waste or converting it into raw material for making value-added products. Waste generated from the glove industry is mainly rubber sludge which is obtained from the chemical flocculation stage of the effluent treatment process and consists of mainly rubber, remnants of compounding ingredients and water. R&D work by the Malaysian Rubber Board on waste utilization and resource recovery investigations have revealed many uses for this sludge. This paper briefly outlines only one of the many options available, which is the conversion of the sludge into sludge derived fuel (SDF). Preliminary study has identified three formulations of SDF with calorific values (CV) exceeding 16 000 kJ/kg, matching a good grade coal. This was considered as promising results which warrant explorative work for further increasing the CV of SDF to turn it into a viable fuel substitute in the latex products manufacturing industry and subsequently apply for a Clean Development Mechanism status to generate income.
  6. Hassan, M.F., Azimi, N.S.N., Kamarudin, K.H., Sheng, C.K.
    ASM Science Journal, 2018;11(101):17-28.
    MyJurnal
    Solid polymer electrolytes based on starch as a polymer host and Magnesium Sulphate
    (MgSO4) as an ionic dopant were successfully prepared by a single-solvent via solution casting
    technique. As determined by XRD and FTIR analyses, the solid polymer electrolyte films
    were in amorphous phase and the coexistence of peaks of the materials (starch and MgSO4)
    confirming that the complex films were successfully obtained. The SEM observations showed
    the films appeared to be rough and flat shape of surface. The highest ionic conductivity (σ)
    of 8.52 ×10−5 S cm−1 was achieved at room temperature (303K) for the sample containing 35
    wt.% MgSO4. The presented results revealed that the as-prepared solid polymer electrolyte
    has the potential as dual functional compound in electrochemical storage application.
  7. Varatharajoo, R.
    ASM Science Journal, 2011;5(2):153-155.
    MyJurnal
    Malaysia has adopted various strategies in developing its space sector. Indigenous space technologies would enable a sustainable growth of the space field and at the same time develop the strategic space technologies. Therefore, issues related to the current space research level are fundamentally crucial to be highlighted. Subsequently, the space focus areas can be derived in order to meet the expectations of the national and international space technology growth requirements, which are moving on to a stronger posture in R&D. In the absence of a strong R&D national space industry leadership, the Malaysian space sector remains in a traditional downstream mode of the world space technology supply chain ever since. The space technology supply chain can be divided into the ground segment and the space segment. This paper examines the current space research activities in Malaysia within the framework of the space technology supply chain. As a result, a preliminary gap in the overview of space research in Malaysia is established.
  8. Arifin, N.M., Mokhtar, N.F.M., Nazar, R., Pop, I.
    ASM Science Journal, 2007;1(1):57-62.
    MyJurnal
    Linear stability analysis was used to investigate the onset of Marangoni convection in a two-layer system. The system comprised a saturated porous layer over which was a layer of the same fluid. The fluid was heated from below and the upper free surface was deformable. At the interface between the fluid and the porous layer, the Beavers-Joseph slip condition was used and in the porous medium the Darcy law was employed to describe the flow. Predictions for the onset of convection were obtained from the analysis by the perturbation technique. The effect of surface deformation and depth ratio, z (which is equal to the depth of the fluid layer/depth of the porous layer) on the onset of fluid motion was studied in detail.
  9. Neo, Han-Foon, Teo, Chuan-Chin, Ong, Thian Song, Devinaga Rasiah, Tong, David Yoon Kin
    ASM Science Journal, 2017;10(101):29-45.
    MyJurnal
    Brick-and-mortar business activities are gradually being replaced by e-commerce worldwide. The number
    of transactions and revenue should be correspondingly higher but due to the increase in the number of
    fraudulent cases, especially unauthorised use of credit cards, the record remains unbreakable. The use
    of biometrics is an optimal solution to safeguard the online user’s identity integrity. However, the best
    practicable way onimplementing biometrics with e-commerce is still in progress. The online user’s identity
    integrity is important because a secure transaction that increases user confidence will directly encourage
    more business. Motivated by the idea “Attack is the best form of defence”, hackers and imposters should
    be misled, traced and penalised accordingly in a proactive approach. In this paper, an intelligent stateof-the-art
    identity integrity safeguard framework encompassing fingerprint technology, a hiddenrisk
    analysis agent mechanism and real-time reporting is proposed. Since e-commerce is ubiquitous, it is
    possible to determine online users’ attitudes from different countries which enables collaboration with a
    French research unit. The findings would be significant to cyberlaw makers and e-commerce merchants
    to promote a secured e-commerce application from the online user’s perspective and consequently
    extend the findings to the m-commerce platform.
  10. Djauhari, M.A.
    ASM Science Journal, 2011;5(1):53-63.
    MyJurnal
    Industrial statistics is an important part of the management system in any industry that strives to continuously improve quality and increase productivity and efficiency. That system covers supply chain management, production design and prototyping, production process and marketing. Industrial statisticians, industrial engineers and industrial leaders should work together hand in hand, in the same language, to ensure that the process and products are as expected. The system itself is never complete. Thus, the usefulness, manageability and reliability of all statistical models used in the system are to be considered as first priority, but those skills are not sufficient. Industrial statisticians should also, of course, be able to come and go between the two poles: statistics and industry. This requirement needs a good understanding about the culture of these poles and how to conduct a mutual symbiosis. One of the principal bridges between these cultures is statistical process control (SPC). This paper is to show that modern industry cannot escape from SPC, especially in a multivariate setting. This setting, which characterizes modern industry, consists of two philosophical problems: how to order data and how to measure process variability. Our recent research results sponsored by the Government of Malaysia will be presented to illustrate the challenging statistical problems in modern industry.
  11. Malek, M. A., Heyrani, M., Juneng, Liew
    ASM Science Journal, 2015;9(1):8-19.
    MyJurnal
    In this study, the implementation of the Regional Climate Model into the hydrodynamic model has been applied for streamflow projection on a river located at the south of Peninsular Malaysia within the years 2070 till 2099. The data has been obtained from a Regional Climate Model (RCM), named Précis, on a daily basis. It begins by comparing historical rainfall data generated from Précis versus the actual gauged recorded rainfall data from Department of Irrigation and Drainage Malaysia (DID). The bias of the generated rainfall data has been reduced by statistical techniques. The same has been applied to the future generated rainfall data from 2070 to 2099. Using the generated precipitation data as input to the hydrological model, results in the daily output of river discharge identified as the main contributor of flood occurrences. Based on the results of the hydrological model utilised, e.g. HEC-HMS, comparison was made between the future and historical generated discharge data using Précis between the years 1960 till 1998. Dividing a year into three segments, e.g. January-April, May-August, SeptemberDecember, the results show that there would be a significant drop of peak discharge in the third segment and an increase in discharge during the second segment. The first part remains almost with no changes. As an addition, the drop of the peak shows reduction in the probability of flood occurrences. It also indicates the reduction in water storage capacity which coherently affects the water supply scheme
  12. Engku Ali, E.A.G., Matori, K.A., Saion, E., Aziz, S.H.A., Zaid, M.H.M., Alibe, I.M.
    ASM Science Journal, 2018;11(101):75-85.
    MyJurnal
    In this study, Zn2SiO4 composite-based ceramic was synthesised using amorphous SiO2
    nanoparticles as a silicon source. Different ratios of Zn:Si were prepared by mixing amorphous
    SiO2 nanoparticles with aqueous zinc nitrate. Amorphous SiO2 nanoparticles were
    encapsulated by the zinc source in aqueous solution, dried, and subjected to heat treatment.
    The heat treatment underwent by the amorphous SiO2 nanoparticles, with zinc source mixture,
    showed the changing of phases, morphology, and size with increased temperature. ZnO
    phase appeared at the beginning of heat treatment and Zn2SiO4 phase started to emerge at
    800◦C onwards, as shown by XRD patterns. The average crystallite size increases from 37
    nm at 600 ◦C to 68 nm at 1000 ◦C. The spherical morphology was observed at 600 and 700
    ◦C, but at temperatures higher than 800 ◦C, the dumbbell or necking-like structures formed.
    Optical band gap analysis of Zn2SiO4 composite was determined to be within the range of
    3.12 ± 0.04 to 3.17 ± 0.04 eV. The photoluminescence of treated samples showed emission
    peaks at 411 and 455 nm wavelengths from ZnOs blue band and at 528 nm wavelength from
    Zn2SiO4
    0
    s green band. The diffusion of zinc ions into Zn2SiO4 composite with high surface
    area will favour the diffusion at a much lower temperature compared to a conventional solid
    state method.
  13. Jawari, M.S.A., Chen, S.K., Halim, S.A., Talib, Z.A., Lee, O.J.
    ASM Science Journal, 2018;11(101):1-7.
    MyJurnal
    Exploiting the merits of superconducting properties, a series of thermal profile was employed
    to modify the melt-textured growth of Y−Ba−CuO bulk with BaTiO3 epitaxial
    crystal seed. Two thermal routes were used whereby multiple heatings of the samples were
    conducted at 940 ◦C and 960 ◦C before elevating to 1040 ◦C and 1070 ◦C, respectively. Our
    finding shows that the optimum melt-textured growth window is narrow within the temperature
    range of 1010−1040 ◦C. Above the peritectic temperature, partial decomposition of
    YBa2Cu3O7−δ (Y123) into YBa2Cu3O5 (Y211) leads to the formation of Y211 multigrains
    embedded in the matrix of Y123. The values of Tc for the superconducting Y123 obtained
    using the two routes are 78 K and 71 K. The lower Tc suggests the presence of structural
    distortion and non-stoichiometry of the samples.
  14. Hii, Y.S., Alias, S.A., Hussin, A., Zakaria, M.P., Moreano, H., Riofrio, M., et al.
    ASM Science Journal, 2009;3(2):143-151.
    MyJurnal
    Surface coverage and some properties soil chemicals were assessed at the Punta Fort William, Greenwich Island during the summer from 1–11 February 2008. Twenty sampling points were established along two strip transects covering a total area of 160 m2. Punta Fort William was basically barren. Rocks, stones and pebbles covered 89.4% of the Punta Fort William. The diversity of vegetation in Punta Fort William was relatively low as compared to other South Shetland Islands. Mosses predominated the area and covered 9.1% of the total surface. Colobantus quitensis was the only vascular plant found at the Punta Fort William. It covered 0.5% of the total surface area. Lichens contributed 0.2% of the surface coverage. Although lichen coverage was low, its frequency of occurrence was among the highest. Total organic carbon (TOC) and total nitrogen (TN) in the study area ranged from 1 g to 39 g C kg–1 and 12 μg to 3892 μg N kg–1, respectively. The level of TOC and TN were comparable to those reported in other maritime locations in Antarctic. Higher levels of TOC and TN were detected in the areas with intensive biological activities. Hydrocarbon concentration was very low in this area and the sources of hydrocarbons were both natural and anthropogenic. The natural hydrocarbons source was mostly biogenic while the petrogenic hydrocarbons input was anthropogenic.
  15. Mehamod, F.S., Kadir, M.A., Jusoh, N., Yusof, N.F., Suah, F.B.
    ASM Science Journal, 2018;11(101):114-123.
    MyJurnal
    The development of new adsorbent has rapidly increased in order to overcome the problem
    of waste water treatment from heavy metal pollution. The ability of nickel (II)-ion imprinted
    polymer (Ni-IIP) as an alternative adsorbent for the removal of nickel ion from aqueous has
    been investigated. The Ni-IIP was prepared via bulk polymerization by using functional
    monomers; methylacrylic acid (MAA) with picolinic acid as a co-monomer. Nickel ion was
    used as template, AIBN as initiator and EGDMA as cross-linking agent. Non-imprinted control
    polymer (NIP) was prepared in the same manner as Ni-IIP but in the absence of nickel
    ion. The resultant of Ni-IIP and NIP were characterized by using Fourier Transform Infrared
    (FTIR) spectroscopy and Scanning Electron Microscope (SEM). Result showed that, the adsorption
    of nickel ion onto Ni-IIP increased as the adsorbent dosage increased and contact
    time is prolonged. The adsorption isotherm model for Ni-IIP and NIP were fitted well with
    Freundlich and Langmuir, respectively. Kinetic study for both Ni-IIP and NIP were followed
    the pseudo-second order, indicates that the rate-limiting step is the surface adsorption that
    involves chemisorption. Selectivity studies showed that the distribution coefficient of Ni2+
    was higher compared to Zn2+, Mg2+ and Pb2+. The present work has successfully synthesized
    Ni-IIP particles with good potential in recognition of Ni2+ ions in an aqueous medium.
  16. Osman, U.M., Ku Bulat, K.H., Razali, M.H., Hashim, M.F.N., Fauzi, F.A., Juahir, Y.
    ASM Science Journal, 2018;11(101):147-157.
    MyJurnal
    Herein, we report the synthesis of a thiosemicarbazide derivatives, namely 4-(2-
    fluorophenyl) thiosemicarbazide from the reaction between 2-fluorophenyl isothiocyanate and
    hydrazine hydrate. The isolated solid compound was elucidated from micro-elemental analysis
    and IR spectroscopy. The structure of the molecule in the ground state was calculated
    using density functional theory (DFT) method and basic set of 6-311G (d,p) was used to
    calculate the energy gap (4Egap), hardness (η), softness (σ) and the global electronegativity
    (χ). Its electrostatic potential mapping and frontier orbital energy analysis were also
    discussed. The interaction of the molecule with selected proteins are investigated using
    SwissTargetPrediction database.
  17. C. Devendra
    ASM Science Journal, 2013;7(2):152-165.
    MyJurnal
    Systems perspectives are fundamental in driving technological improvements and yield-enhancing strategies that improve agricultural productivity. These can resolve farmerʼs problems and are important pathways for sustaining food and nutritional security for human welfare in Asia. The essential determinants of this objective are the capacity to efficiently manage the natural resource base (land, crops, animals, and water) to resolve constraints to farming systems, and notably the integration of multiple research and development (R&D) issues through all levels of formal and non-formal learning systems. Both formal and informal education systems are important, with the former relating more to universities and colleges, and the latter to the intermediate level. Graduates from this level have the primary responsibility of introducing improved technologies and change to farmers, mainly along production and disciplinary pathways.The traditional research–extension–farmer model for technology delivery is no longer acceptable, due to “top down” extension functions and prescriptions, ineffectiveness to cope with the dynamics of production systems, complex interactions within the natural resources, effects of climate change and globalisation. There are also reservations on the technical capacity and skills of extension agents, constraints identification, methods for technology diffusion and dissemination, and innovative use of beneficial technological improvements that can directly respond to the needs of small farmers, and impact on subsistence agriculture. Agricultural education and systems perspectives are therefore an overriding compelling necessity which transcends prevailing limitations to waning agriculture and rural growth. Their wider recognition and applications provides an important means to maximise efficiency in the potential use; of the natural resources, increase engagement and investments in agriculture, promote ways to become more self-reliant in the development of crucial new technologies and intensification. These together can meet the challenges of the future and overcome the legacy of continuing poverty, food and nutritional insecurity. Asian farming systems, with their diversity of crops and animals, traditional methods, multiple crop-animal interactions, numerous problems of farmers present increasingly complex issues of natural resource management (NRM) and the environment. Many if not all of these can only be resolved by interdisciplinary R&D, which overcomes a major weakness of many R&D programmes presently and in the past. Improved education and training is a powerful and important driver of community-based participation aimed at enhancing sustainable food security, poverty reduction and social equity in which the empowerment of women in activities that support organising themselves is also an important pathway to enhance self-reliance and their contribution to agriculture. A vision for the future in which improved agricultural education in a systems context can provide the pathway to directly benefit the revitalisation of agriculture and agricultural development is proposed with a three-pronged strategy as follows:
    Define policy for the development of appropriate curricular for formal agricultural education that provides strong multi-disciplinary orientation and improved understanding of the natural resources (land, crops, animals and water) and their interactions
    Organise formal degree education and specialisation at the university level that reflects strong training in understanding of agricultural systems; systems perspectives, methodologies and their application, and
    Define non-formal education and training needs that can be intensified at different levels, including the trainin of trainers as agents of change.
  18. S.P. Woo, I.H. Siti, Y. Zulfigar, S.H. Tan
    ASM Science Journal, 2013;7(2):167-171.
    MyJurnal
    The unsustainable harvesting of sea cucumbers in the Straits of Malacca poses a danger of collapsing population of this marine resource. Recent survey revealed the absence of commercially important sea cucumber species like Stichopus horrens was alarming since there were a lot of taxonomical complications in identifying species from this genus. The knowledge of taxonomy and ecology is an integral part in determining resource management strategies and conservation of marine resources like sea cucumber.
  19. Sofian Ibrahim, Keong, Chai Chee, Ratnam, Chantara Thevy, Khairiah Badri
    ASM Science Journal, 2018;11(2):67-75.
    MyJurnal
    Radiation pre-vulcanised natural rubber latex (RVNRL) prepared by using gamma irradiation technique has many advantages over the conventionally prepared sulphur pre-vulcanised natural rubber latex (SPVL). Despite the fact that many potential latex dipped products can be made from RVNRL, little effort was made to fully commercialise the products because of the inferior strength of RVNRL products compared to SPVL products. An attempt was made to improve the tensile strength of RVNRL by combining both radiation and peroxide vulcanisation in order to ensure that the products will not tear or fail, and has sufficient stretch. Hexanediol diacrylate (HDDA) plays the main role as sensitizer during radiation vulcanisation and tert-butyl hydroperoxide (t-BHPO) as the co-sensitizer in peroxide vulcanisation. Pre-vulcanised natural rubber latex dipped films via hybrid radiation and peroxidation vulcanisations obtained showed tensile strength of 26.7 MPa, an increment of more than 15% compared to controlled film (22.5 MPa). Besides, the crosslink percentage of the rubber films also showed around 5% increment from 90.7% to 95.6%.
  20. Aima, R., Halim, S.A., Chen, S.K., Awang Kechik, M.M.
    ASM Science Journal, 2018;11(101):8-16.
    MyJurnal
    Polycrystalline samples of YBa2Cu3O7−δ added with small amounts (x = 0.0 - 1.0 wt%)
    of Sm2O3 nanoparticles were synthesized via co-precipitation process. The effects of addition
    of Sm2O3 nanoparticles on the superconducting properties and crystal structure of
    YBa2Cu3O7−δ were thoroughly elucidated. The superconducting transition temperature
    (Tc) of each sample was measured by a standard four point probe method. As the addition
    of nano-Sm2O3 increases, the reduction of Tc occur from 92 K for x = 0.0 to 80 K for x =
    1.0 wt% attributable to oxygen vacancy disorder. The crystal lattice parameters of all samples
    were determined by X-ray diffraction (XRD) with the Rietveld refinement technique. It
    was found that the samples are predominantly single phase perovskite structure Y-123 with
    orthorhombic, small amount of Y-211 and unreacted Sm2O3 secondary phases for samples
    x = 0.2 - 1.0 wt%. Besides, the structure from SEM images showed that the structure becomes
    more porous than the pure sample and the grain sizes are getting slightly decrease
    as the addition of Sm2O3 nanoparticles increase. The addition of nano-Sm2O3 disrupts the
    grain growth of YBCO (123), therefore resulting in the degradation of microstructure and
    superconducting properties of the samples.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links