Displaying publications 141 - 160 of 214 in total

Abstract:
Sort:
  1. Kapoor RT, Salvadori MR, Rafatullah M, Siddiqui MR, Khan MA, Alshareef SA
    Front Microbiol, 2021;12:658294.
    PMID: 34149647 DOI: 10.3389/fmicb.2021.658294
    The nanomaterials synthesis is an intensifying research field due to their wide applications. The high surface-to-volume ratio of nanoparticles and quick interaction capacity with different particles make them as an attractive tool in different areas. Conventional physical and chemical procedures for development of metal nanoparticles become outmoded due to extensive production method, energy expenditure and generation of toxic by-products which causes significant risks to the human health and environment. Hence, there is a growing requirement to search substitute, non-expensive, reliable, biocompatible and environmental friendly methods for development of nanoparticles. The nanoparticles synthesis by microorganisms has gained significant interest due to their potential to synthesize nanoparticles in various sizes, shape and composition with different physico-chemical properties. Microbes can be widely applied for nanoparticles production due to easy handling and processing, requirement of low-cost medium such as agro-wastes, simple scaling up, economic viability with the ability of adsorbing and reducing metal ions into nanoparticles through metabolic processes. Biogenic synthesis of nanoparticles offers clean, non-toxic, environmentally benign and sustainable approach in which renewable materials can be used for metal reduction and nanoparticle stabilization. Nanomaterials synthesized through microbes can be used as a pollution abatement tool as they also contain multiple functional groups that can easily target pollutants for efficient bioremediation and promotes environmental cleanup. The objective of the present review is to highlight the significance of micro-organisms like bacteria, actinomycetes, filamentous fungi, yeast, algae and viruses for nanoparticles synthesis and advantages of microbial approaches for elimination of heavy metals, dyes and wastewater treatment.
  2. Kamal MA, Perveen K, Khan F, Sayyed RZ, Hock OG, Bhatt SC, et al.
    Front Microbiol, 2023;14:1228117.
    PMID: 37601347 DOI: 10.3389/fmicb.2023.1228117
    Heavy metal pollution of soil is a major concern due to its non-biodegradable nature, bioaccumulation, and persistence in the environment. To explore the probable function of EDTA in ameliorating heavy metal toxicity and achieve the sustainable development goal (SDG), Brassica juncea L. seedlings were treated with different concentrations of EDTA (0, 1.0, 2.0, 3.0, and 4.0 mM Kg-1) in heavy metal-polluted soil. Plant samples were collected 60 days after sowing; photosynthetic pigments, H2O2, monoaldehyde (MDA), antioxidant enzymes, and ascorbic acid content, as well as plant biomass, were estimated in plants. Soil and plant samples were also examined for the concentrations of Cd, Cr, Pb, and Hg. Moreover, values of the phytoremediation factor were utilized to assess the accumulation capacity of heavy metals by B. juncea under EDTA treatments. In the absence of EDTA, B. juncea seedlings accrued heavy metals in their roots and shoots in a concentration-dependent manner. However, the highest biomass of plants (roots and shoots) was recorded with the application of 2 mM kg-1 EDTA. Moreover, high levels (above 3 mM kg-1) of EDTA concentration have reduced the biomass of plants (roots and shoots), photosynthetic area, and chlorophyll content. The effect of EDTA levels on photosynthetic pigments (chlorophyll a and b) revealed that with an increment in EDTA concentration, accumulation of heavy metals was also increased in the plant, subsequently decreasing the chlorophyll a and b concentration in the plant. TLF was found to be in the order Pb> Hg> Zn> and >Ni, while TF was found to be in the order Hg>Zn>Ni>Pb, and the best dose was 3 mM kg-1 EDTA for Hg and 4 mM kg-1 for Pb, Ni, and Zn. Furthermore, hyperaccumulation of heavy metals enhanced the generation of hydrogen peroxide (H2O2), superoxide anions (O2•-), and lipid peroxidation. It also interrupts mechanisms of the antioxidant defense system. Furthermore, heavy metal stress reduced plant growth, biomass, and chlorophyll (chl) content. These findings suggest that the exogenous addition of EDTA to the heavy metal-treated seedlings increases the bioavailability of heavy metals for phytoextraction and decreases heavy metal-induced oxidative injuries by restricting heavy metal uptake and components of their antioxidant defense systems.
  3. Kalidasan V, Theva Das K
    Front Microbiol, 2020;11:46.
    PMID: 32082282 DOI: 10.3389/fmicb.2020.00046
    There is a continuous search for an HIV cure as the success of ART in blocking HIV replication and the role of CD4+ T cells in HIV pathogenesis and immunity do not entirely eradicate HIV. The Berlin patient, who is virus-free, serves as the best model for a 'sterilizing cure' and many experts are trying to mimic this approach in other patients. Although failures were reported among Boston and Essen patients, the setbacks have provided valuable lessons to strengthen cure strategies. Following the Berlin patient, two more patients known as London and Düsseldorf patients might be the second and third person to be cured of HIV. In all the cases, the patients underwent chemotherapy regimen due to malignancy and hematopoietic stem cell transplantation (HSCT) which required matching donors for CCR5Δ32 mutation - an approach that may not always be feasible. The emergence of newer technologies, such as long-acting slow-effective release ART (LASER ART) and CRISPR/Cas9 could potentially overcome the barriers due to HIV latency and persistency and eliminate the need for CCR5Δ32 mutation donor. Appreciating the failure and success stories learned from these HIV breakthroughs would provide some insight for future HIV eradication and cure strategies.
  4. Kaliaperumal K, Salendra L, Liu Y, Ju Z, Sahu SK, Elumalai S, et al.
    Front Microbiol, 2023;14:1216928.
    PMID: 37849927 DOI: 10.3389/fmicb.2023.1216928
    INTRODUCTION: Fungus-derived secondary metabolites are fascinating with biomedical potential and chemical diversity. Mining endophytic fungi for drug candidates is an ongoing process in the field of drug discovery and medicinal chemistry. Endophytic fungal symbionts from terrestrial plants, marine flora, and fauna tend to produce interesting types of secondary metabolites with biomedical importance of anticancer, antiviral, and anti-tuberculosis properties.

    METHODS: An organic ethyl acetate extract of Penicillium verruculosum sponge-derived endophytic fungi from Spongia officinalis yielded seven different secondary metabolites which are purified through HPLC. The isolated compounds are of averufin (1), aspergilol-A (2), sulochrin (3), monomethyl sulochrin (4), methyl emodin (5), citreorosein (6), and diorcinol (7). All the seven isolated compounds were characterized by high-resolution NMR spectral studies. All isolated compounds', such as anticancer, antimicrobial, anti-tuberculosis, and antiviral, were subjected to bioactivity screening.

    RESULTS: Out of seven tested compounds, compound (1) exhibits strong anticancer activity toward myeloid leukemia. HL60 cell lines have an IC50 concentration of 1.00μm, which is nearly significant to that of the standard anticancer drug taxol. A virtual computational molecular docking approach of averufin with HL60 antigens revealed that averufin binds strongly with the protein target alpha, beta-tubulin (1JFF), with a -10.98 binding score. Consecutive OSIRIS and Lipinski ADME pharmacokinetic validation of averufin with HL60 antigens revealed that averufin has good pharmacokinetic properties such as drug score, solubility, and mutagenic nature. Furthermore, aspergilol-A (2) is the first report on the Penicillium verruculosum fungal strain.

    DISCUSSION: We concluded that averufin (1) isolated from Penicillium verruculosum can be taken for further preliminary clinical trials like animal model in-vivo studies and pharmacodynamic studies. A future prospect of in-vivo anticancer screening of averufin can be validated through the present experimental findings.

  5. Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, et al.
    Front Microbiol, 2020;11:580024.
    PMID: 33193209 DOI: 10.3389/fmicb.2020.580024
    Acidobacteria represents an underrepresented soil bacterial phylum whose members are pervasive and copiously distributed across nearly all ecosystems. Acidobacterial sequences are abundant in soils and represent a significant fraction of soil microbial community. Being recalcitrant and difficult-to-cultivate under laboratory conditions, holistic, polyphasic approaches are required to study these refractive bacteria extensively. Acidobacteria possesses an inventory of genes involved in diverse metabolic pathways, as evidenced by their pan-genomic profiles. Because of their preponderance and ubiquity in the soil, speculations have been made regarding their dynamic roles in vital ecological processes viz., regulation of biogeochemical cycles, decomposition of biopolymers, exopolysaccharide secretion, and plant growth promotion. These bacteria are expected to have genes that might help in survival and competitive colonization in the rhizosphere, leading to the establishment of beneficial relationships with plants. Exploration of these genetic attributes and more in-depth insights into the belowground mechanics and dynamics would lead to a better understanding of the functions and ecological significance of this enigmatic phylum in the soil-plant environment. This review is an effort to provide a recent update into the diversity of genes in Acidobacteria useful for characterization, understanding ecological roles, and future biotechnological perspectives.
  6. James JE, Lamping E, Santhanam J, Cannon RD
    Front Microbiol, 2021;12:673206.
    PMID: 34149660 DOI: 10.3389/fmicb.2021.673206
    Fusarium keratoplasticum is arguably the most common Fusarium solani species complex (FSSC) species associated with human infections. Invasive fusariosis is a life-threatening fungal infection that is difficult to treat with conventional azole antifungals. Azole drug resistance is often caused by the increased expression of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG sub-family. Most investigations of Fusarium ABC transporters associated with azole antifungal drug resistance are limited to plant pathogens. Through the manual curation of the entire ABCG protein family of four FSSC species including the fully annotated genome of the plant pathogen Nectria haematococca we identified PDR transporters ABC1 and ABC2 as the efflux pump candidates most likely to be associated with the innate azole resistance phenotype of Fusarium keratoplasticum. An initial investigation of the transcriptional response of logarithmic phase F. keratoplasticum cells to 16 mg/L voriconazole confirmed strong upregulation (372-fold) of ABC1 while ABC2 mRNA levels were unaffected by voriconazole exposure over a 4 h time-period. Overexpression of F. keratoplasticum ABC1 and ABC2 in the genetically modified Saccharomyces cerevisiae host ADΔΔ caused up to ∼1,024-fold increased resistance to a number of xenobiotics, including azole antifungals. Although ABC1 and ABC2 were only moderately (20% and 10%, respectively) expressed compared to the Candida albicans multidrug efflux pump CDR1, overexpression of F. keratoplasticum ABC1 caused even higher resistance levels to certain xenobiotics (e.g., rhodamine 6G and nigericin) than CDR1. Our investigations suggest an important role for ABC1 orthologues in the innate azole resistance phenotype of FSSC species.
  7. James JE, Lamping E, Santhanam J, Milne TJ, Abd Razak MF, Zakaria L, et al.
    Front Microbiol, 2020;11:272.
    PMID: 32296397 DOI: 10.3389/fmicb.2020.00272
    In the fungal pathogen Aspergillus fumigatus, resistance to azole antifungals is often linked to mutations in CYP51A, a gene that encodes the azole antifungal drug target lanosterol 14α-demethylase. The aim of this study was to investigate whether similar changes could be associated with azole resistance in a Malaysian Fusarium solani species complex (FSSC) isolate collection. Most (11 of 15) clinical FSSC isolates were Neocosmospora keratoplastica and the majority (6 of 10) of environmental isolates were Neocosmospora suttoniana strains. All 25 FSSC isolates had high minimum inhibitory concentrations (MICs) for itraconazole and posaconazole, low MICs for amphotericin B, and various (1 to >32 mg/l) voriconazole susceptibilities. There was a tight association between a 23 bp CYP51A promoter deletion and high (>32 mg/l) voriconazole MICs; of 19 FSSC strains sequenced, nine isolates had voriconazole MICs > 32 mg/l, and they all contained the 23 bp CYP51A promoter deletion, although it was absent in the ten remaining isolates with low (≤12 mg/l) voriconazole MICs. Surprisingly, this association between voriconazole resistance and the 23 bp CYP51A promoter deletion held true across species boundaries. It was randomly distributed within and across species boundaries and both types of FSSC isolates were found among environmental and clinical isolates. Three randomly selected N. keratoplastica isolates with low (≤8 mg/l) voriconazole MICs had significantly lower (1.3-7.5 times) CYP51A mRNA expression levels than three randomly selected N. keratoplastica isolates with high (>32 mg/l) voriconazole MICs. CYP51A expression levels, however, were equally strongly induced (~6,500-fold) by voriconazole in two representative strains reaching levels, after 80 min of induction, that were comparable to those of CYP51B. Our results suggest that FSSC isolates with high voriconazole MICs have a 23 bp CYP51A promoter deletion that provides a potentially useful marker for voriconazole resistance in FSSC isolates. Early detection of possible voriconazole resistance is critical for choosing the correct treatment option for patients with invasive fusariosis.
  8. Ibrahim I, Salehmin MNI, Balachandran K, Hil Me MF, Loh KS, Abu Bakar MH, et al.
    Front Microbiol, 2023;14:1192187.
    PMID: 37520357 DOI: 10.3389/fmicb.2023.1192187
    Microbial electrosynthesis (MES) is an emerging electrochemical technology currently being researched as a CO2 sequestration method to address climate change. MES can convert CO2 from pollution or waste materials into various carbon compounds with low energy requirements using electrogenic microbes as biocatalysts. However, the critical component in this technology, the cathode, still needs to perform more effectively than other conventional CO2 reduction methods because of poor selectivity, complex metabolism pathways of microbes, and high material cost. These characteristics lead to the weak interactions of microbes and cathode electrocatalytic activities. These approaches range from cathode modification using conventional engineering approaches to new fabrication methods. Aside from cathode development, the operating procedure also plays a critical function and strategy to optimize electrosynthesis production in reducing operating costs, such as hybridization and integration of MES. If this technology could be realized, it would offer a new way to utilize excess CO2 from industries and generate profitable commodities in the future to replace fossil fuel-derived products. In recent years, several potential approaches have been tested and studied to boost the capabilities of CO2-reducing bio-cathodes regarding surface morphology, current density, and biocompatibility, which would be further elaborated. This compilation aims to showcase that the achievements of MES have significantly improved and the future direction this is going with some recommendations. Highlights - MES approach in carbon sequestration using the biotic component.- The role of microbes as biocatalysts in MES and their metabolic pathways are discussed.- Methods and materials used to modify biocathode for enhancing CO2 reduction are presented.
  9. Iancu L, Muslim A, Aazmi S, Jitaru V
    Front Microbiol, 2023;14:1234254.
    PMID: 37564294 DOI: 10.3389/fmicb.2023.1234254
    INTRODUCTION: Forensic microbiome studies expanded during the last decade, aiming to identify putative bacterial biomarkers to be used for the postmortem interval (PMI) estimation. Bacterial diversity and dynamics during decomposition are influenced by each individual's micro and macroenvironment, ante and postmortem conditions, varying across body sites and time. The skin, the largest organ of the human body, hosts a diverse microbial diversity, representing the first line of defense of a living individual. Targeting the investigation of the postmortem skin microbiome could help understanding the role of microbes during decomposition, and association with the ante and postmortem conditions.

    METHODS: The current study aimed to identify the postmortem skin microbiome signatures associated with eight human bodies, received at the Institute of Legal Medicine Iasi, Romania, during April and May 2021. A total of 162 samples (including triplicate) representing face and hands skin microbiome were investigated via Illumina MiSeq, upon arrival at the morgue (T0) and after 12 hours (T1).

    RESULTS: The taxonomic characteristics of the skin microbiota varied across different body sites. However, there were no significant differences in taxonomic profiles between collection time, T0 and T1, except for some dynamic changes in the abundance of dominant bacteria. Moreover, different microbial signatures have been associated with a specific cause of death, such as cardiovascular disease, while an elevated blood alcohol level could be associated with a decrease in bacterial richness and diversity.

    DISCUSSION: The places where the bodies were discovered seemed to play an important role in explaining the bacterial diversity composition. This study shows promising results towards finding common postmortem bacterial signatures associated with human cadavers within the first 12h at the morgue.

  10. Hussain A, Ong EBB, Balaram P, Ismail A, Kien PK
    Front Microbiol, 2023;14:1301478.
    PMID: 38029101 DOI: 10.3389/fmicb.2023.1301478
    BACKGROUND: S. Typhi is a Gram-negative bacterium that causes typhoid fever in humans. Its virulence depends on the TolC outer membrane pump, which expels toxic compounds and antibiotics. However, the role of TolC in the host cell adhesion and invasion by S. Typhi is unclear.

    OBJECTIVE: We aimed to investigate how deleting the tolC affects the adhesion and invasion of HT-29 epithelial and THP-1 macrophage cells by S. Typhi in vitro.

    METHODS: We compared the adhesion and invasion rates of the wild-type and the tolC mutant strains of S. Typhi using in vitro adhesion and invasion assays. We also measured the expression levels of SPI-1 genes (invF, sipA, sipC, and sipD) using quantitative PCR.

    RESULTS: We found that the tolC mutant showed a significant reduction in adhesion and invasion compared to the wild-type strain in both cell types. We also observed that the expression of SPI-1 genes was downregulated in the tolC mutant.

    DISCUSSION: Our results suggest that TolC modulates the expression of SPI-1 genes and facilitates the adhesion and invasion of host cells by S. Typhi. Our study provides new insights into the molecular mechanisms of S. Typhi pathogenesis and antibiotic resistance. However, our study is limited by the use of in vitro models and does not reflect the complex interactions between S. Typhi and host cells in vivo.

  11. Huligere SS, Kumari V B C, Desai SM, Wong LS, Firdose N, Ramu R
    Front Microbiol, 2023;14:1288487.
    PMID: 38111646 DOI: 10.3389/fmicb.2023.1288487
    The current study aims to evaluate and characterize the probiotic andantidiabetic properties of lactic acid bacteria (LAB) obtained from milk and other dairy-based products. The strains were tested physiologically, biochemically, and molecularly. Based on biochemical tests and 16S rRNA gene amplification and sequencing, all three isolates RAMULAB18, RAMULAB19, and RAMULAB53 were identified as Lacticaseibacillus paracasei with homology similarity of more than 98%. The inhibitory potential of each isolate against carbohydrate hydrolysis enzymes (α-amylase and α-glucosidase) was assessed using three different preparations of RAMULAB (RL) isolates: the supernatant (RL-CS), intact cells (RL-IC), and cell-free extraction (RL-CE). Additionally, the isolate was evaluated for its antioxidant activity against free radicals (DPPH and ABTS). The strain's RL-CS, RL-CE, and RL-IC inhibited α-amylase (17.25 to 55.42%), α-glucosidase (15.08-59.55%), DPPH (56.42-87.45%), and ABTS (46.35-78.45%) enzymes differently. With the highest survival rate (>98%) toward tolerance to gastrointestinal conditions, hydrophobicity (>42.18%), aggregation (>74.21%), as well as attachment to an individual's colorectal cancer cell line (HT-29) (>64.98%), human buccal and chicken crop epithelial cells, all three isolates exhibited extensive results. All three isolates exhibited high resistance toward antibiotics (methicillin, kanamycin, cefixime, and vancomycin), and other assays such as antibacterial, DNase, hemolytic, and gelatinase were performed for safety assessment. Results suggest that the LAB described are valuable candidates for their significant health benefits and that they can also be utilized as a beginning or bio-preservative tradition in the food, agriculture, and pharmaceutical sectors. The LAB isolates are excellent in vitro probiotic applicants and yet additional in vivo testing is required.
  12. Huang T, Su LJ, Zeng NK, Lee SML, Lee SS, Thi BK, et al.
    Front Microbiol, 2022;13:1087756.
    PMID: 36741898 DOI: 10.3389/fmicb.2022.1087756
    Hainan is the second largest island in China with the most extensive and well-preserved tropical forests and is also the largest island of the Indo Burma Biodiversity Hotspot. It provides in situ conservation for the unique ecosystem of the island. Recent studies have shown that there are diverse fungal species in Hainan. In this study, about 40 collections of the genus Amanita have been studied based on the morphology and molecular systematics, including 35 Chinese specimens (24 from Hainan, and eleven from other regions) and three specimens from other countries (Singapore and Malaysia). In total, five new species belonging to Amanita section Validae are described: A. cacaina, A. parvigrisea, A. pseudofritillaria, A. pseudosculpta, and A. yangii. Amanita parvifritillaria is recorded for the first time in Hainan. It is also the first report of this fungus occurring, outside Yunnan Province, China. Among the five new species, two are unique in this section because of the appendiculate pileus margin and the absence of an annulus. Based on these new findings, the diagnosis of the section Validae should be slightly modified to include a few species with appendiculate margin and the lack of annulus.
  13. How KY, Song KP, Chan KG
    Front Microbiol, 2016;7:53.
    PMID: 26903954 DOI: 10.3389/fmicb.2016.00053
    Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity.
  14. How KY, Hong KW, Sam CK, Koh CL, Yin WF, Chan KG
    Front Microbiol, 2015;6:240.
    PMID: 25926817 DOI: 10.3389/fmicb.2015.00240
    Myriad proteobacteria use N-acyl homoserine lactone (AHL) molecules as quorum sensing (QS) signals to regulate different physiological functions, including virulence, antibiotic production, and biofilm formation. Many of these proteobacteria possess LuxI/LuxR system as the QS mechanism. Recently, we reported the 3.89 Mb genome of Acinetobacter sp. strain GG2. In this work, the genome of this long chain AHL-producing bacterium was unravelled which led to the molecular characterization of luxI homologue, designated as aciI. This 552 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was ∼20.5 kDa and is highly similar to several autoinducer proteins of LuxI family among Acinetobacter species. To verify the AHL synthesis activity of this protein, high-resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-dodecanoyl-homoserine lactone and 3-hydroxy-dodecanoyl-homoserine lactone from induced E. coli harboring the recombinant AciI. Our data show for the first time, the cloning and characterization of the luxI homologue from Acinetobacter sp. strain GG2, and confirmation of its AHLs production. These data are of great significance as the annotated genome of strain GG2 has provided a valuable insight in the study of autoinducer molecules and its roles in QS mechanism of the bacterium.
  15. Ho WS, Yap KP, Yeo CC, Rajasekaram G, Thong KL
    Front Microbiol, 2015;6:1547.
    PMID: 26793180 DOI: 10.3389/fmicb.2015.01547
    Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as bla TEM-1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical importance. Such phenomenon is bothersome when the plasmids are transmissible, facilitating the spread of virulence and resistance plasmids among pathogenic bacteria. Notably, certain TA systems are more commonly found in particular ExPEC plasmid types, indicating the possible relationships between certain TA systems and ExPEC pathogenesis.
  16. Heng SP, Letchumanan V, Deng CY, Ab Mutalib NS, Khan TM, Chuah LH, et al.
    Front Microbiol, 2017;8:997.
    PMID: 28620366 DOI: 10.3389/fmicb.2017.00997
    Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide.
  17. Hasain Z, Raja Ali RA, Abdul Razak S, Azizan KA, El-Omar E, Razalli NH, et al.
    Front Microbiol, 2021;12:680622.
    PMID: 34248897 DOI: 10.3389/fmicb.2021.680622
    Aberrant gut microbiota dysbiosis in women with a previous history of gestational diabetes mellitus (post-GDM) was comparable to that in adults with type 2 diabetes mellitus (T2DM). Nonetheless, potential relationships between diet, gut microbiota, and metabolic phenotypes in post-GDM women after delivery are yet to be discovered. In this research, we assessed the relationship of the macronutrient intakes, gut microbiota composition, and metabolic phenotypes (i.e., anthropometrics and glycemic control) in post-GDM women with and without postpartum glucose intolerance (GI). About 24 post-GDM women were included in this study, 14 women were grouped in the GI group and 10 women were grouped in the normal glucose tolerance (NGT) group according to oral glucose tolerance test. Macronutrient intake assessment using a 3-day dietary record, anthropometric measurements, biochemical analyses, and fecal sampling were done during 3-6 months postpartum. Gut microbiota profiling was determined using 16S rRNA genes sequencing targeting the V3-V4 regions. The relationships between macronutrient intakes, gut microbiota composition, and metabolic phenotypes were evaluated using Pearson's correlation coefficient and stepwise regression analyses. In this study, most post-GDM women had significantly poor dietary fiber adherence than the nutritional recommendations. Women from the GI group have significantly higher fasting blood glucose (FBG), HbA1c, and homeostasis model assessment-estimated insulin resistance (HOMA-IR) levels compared to the NGT group. The group also showed significant elevation of high-sensitivity C-reactive protein (hs-CRP) level when compared to the normal value. Specific gut microbial taxa derived from Proteobacteria and Bacteroidetes such as Parasutterella, Aquicella, Haliscomenobacter, and Prevotellaceae_NK3B31_group were significantly abundant in the GI group compared to the NGT group. Prevotellaceae_NK3B31_group was significantly associated with high FBG, HOMA-IR, and HbA1c levels. Low fiber and monounsaturated fatty acids intakes were associated with Lactobacillus. Meanwhile, Lactobacillus was associated with high body mass index, waist circumference, 2-h postprandial blood glucose, and hs-CRP levels. Our study suggested that macronutrient intake is an important predictor of gut microbiota dysbiosis and is associated with obesity, low-grade inflammation, and poor glycemic control in post-GDM women. Hence, dietary intake modification to remodel gut microbiota composition is a promising T2DM preventive strategy in post-GDM women.
  18. Hamzah TNT, Lee SY, Hidayat A, Terhem R, Faridah-Hanum I, Mohamed R
    Front Microbiol, 2018;9:1707.
    PMID: 30090097 DOI: 10.3389/fmicb.2018.01707
    Rhizophora mucronata is an important ecosystem entity of the Malaysian mangrove forest. Since the species grows in a harsh environment, any organism that is isolated from this species would be of huge interest due to its potential in having novel bioactive compounds. In the present work, we isolated, identified and characterized, a total of 78 fungal isolates harboring inside the leaf tissues of R. mucronata. Molecular identification using the nuclear ribosomal DNA internal transcribe spacer (ITS) sequences returned with high similarity matches to known sequences in the GenBank. Maximum likelihood analysis revealed the phylogenetic relationship of all isolates from this study. Most of the dominating fungal endophytes were from the genera Pestalotiopsis, followed by Alternaria and Cladosporium. Six isolates representing the genera Alternaria, Fusarium, Nigrospora, Pestalotiopsis, Phoma, and Xylaria, were further screened for their antagonism activities. Dual culture test assay revealed their inhibition percentages against the phytopathogenic fungus Fusarium solani between 45-66%, and 0.8-23% when using non-volatile test assay. Of the six isolates, only Fusarium lateritium and Xylaria sp. showed antibacterial activities against the pathogenic bacteria, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, with the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) ranging from 0.5 to 2 mg/mL. The DPPH radical scavenging assay recorded a high level of antioxidant activity in Xylaria sp., 3-fold above that of F. lateritium. We demonstrate for the first time, two members belonging to the endophytic fungal community in the tropical mangrove species that have potential use as antagonists and antibacterial agents for future biotechnological applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links