Due to the emergence of antibiotic resistance, bacteriophage therapy appears to be an ideal weapon to utilize against pathogenic bacteria. This study aimed to isolate, identify and characterize the lytic bacteriophage effective against the multidrug-resistant Acinetobacter baumannii clinical isolates. The isolated bacteriophage caused lysis by applying the double-layer agar technique on A. baumannii up to 99% in 18 hours of incubation at 37ºC. The bacterial growth reduction assay exhibited that JHA phage had high adsorption rates and could rapidly inhibit bacterial growth. The pH and thermal stability testing showed that JHA phage was stable in vast ranges of pH from 5 to 9 but its activity was highest at pH7 (1860000±1000 pfu/mL). It was stable in broad ranges of temperatures from 25ºC to 60ºC but the highest activity was found at 37ºC (1300000±30000 pfu/mL). One-step growth test results showed that it has a short latent period, strong lytic ability, high burst size and adsorption rates and was host specific. Scanning electron microscopy (SEM) of JHA phage demonstrated icosahedral heads and tailless particles. Transmission electron microscopy (TEM) revealed JHA phage belongs to Tectiviridae family. All the characteristics of JHA phage possess lytic activity against A. baumannii strains and exhibit novel candidates to use as an alternative competitor to antibiotics in controlling such infections.
The aim of the study is to assess and compare the impact of antiviral drug alone and in combination with antibiotic for prevention of Influenza-A H1N1 induced acute kidney injury (AKI) in hospitalized patients. Hospitalized admitted patients with confirmed diagnosis of Influenza-A H1N1 infection were divided into two groups: group 1, which received antiviral (oseltamivir) drug alone and group 2, which received antiviral (oseltamivir) in combination with empirically prescribed antibiotic. Patients of both groups were assessed for incidences of AKI by two criteria i.e Acute Kidney Injury Network (AKIN) and RIFLE. A total of 329 patients (176 for group 1 and 153 for group 2) were enrolled. According to RIFLE criteria, 23(13%) of group 1 and 9(6%) patients of groups 2 were suffered from AKI with statistically significant difference (P<0.05). Also as per AKIN criteria, the incidence of AKI is statistically significantly difference (P<0.05) between both groups with 18(10%) patients and 6(4%) patients of group 1 and 2 respectively. Length of hospitalization was statistically less (P<0.05) in group 2 patients. The incidences of AKI in Influenza-A H1N1 treated with antiviral and antibiotic combination was statistically less as compared to patients who were given antiviral alone for treatment of influenza infection.
Pharmaceutical substance sitagliptin has long been used to treat diabetes. However, subsequent researches have shown that sitagliptin has additional therapeutic effects. Anti-inflammatory effects are observed. Combining sitagliptin with biodegradable polymers like nanoparticles for chemotherapy may be effective. This method enhances therapeutic agent pharmacokinetics. This study tests sitagliptin (SIT) chitosan base nanoparticles against MCF-7 cancer cell lines for anti-cancer effects. Sitagliptin chitosan-based nanoparticles are tested for their ability to suppress MCF-7 cancer cell proliferation. Ionic gelation, a typical nanoparticle manufacturing method, was used. A detailed examination of the nanoparticles followed, using particle-size measurement, FTIR and SEM. Entrapment efficiency, drug-loading, and in-vitro drug release were assessed. Loaded with chitosan and sitagliptin, the nanoparticles averaged 500nm and 534nm in diameter. Sitagliptin has little effect on particle size. Chitosan-based Sitagliptin nanoparticles grew slightly, suggesting Sitagliptin is present. SIT-SC-NPs had 32% encapsulation efficiency and 30% drug content due to their high polymer-to-drug ratio. SEM analysis showed that both drug-free and sitagliptin-loaded nanoparticles are spherical, as shown by the different bands in the photos. The SIT-CS-NPs had a 120-hour release efficiency of up to 80%. This suggests that these nanoparticles could cure hepatocellular carcinoma, specifically MCF-7 cell lines.
This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles. Each of the five groups involved in the research had an average of eight rats. Distilled water was given to the rats in the control group whereas Streptozotocin (STZ) was given to the diabetic group. Additionally, streptozotocin and fucoxanthin administration were performed as the fucoxanthin group. The administration of fucoxanthin nanoparticles caused a significant decline in the levels of the enzymes ALT, AST and ALP in the blood and MDA in the liver tissue of diabetic rats. Furthermore, as compared to the group of diabetic rats, the fucoxanthin nanoparticles treatment produced a significant rise in SOD and GPx levels. These effects directly can prevent histological abnormalities, notably fatty degeneration, and necrosis, in diabetic rats. The findings of this research suggest that fucoxanthin nanoparticles exhibited significant antioxidant activity in STZ-induced diabetic rats. The antioxidant activity of fucoxanthin nanoparticles potential to prevent diabetes complications such as hepatopathy.