Displaying publications 161 - 180 of 215 in total

Abstract:
Sort:
  1. How KY, Song KP, Chan KG
    Front Microbiol, 2016;7:53.
    PMID: 26903954 DOI: 10.3389/fmicb.2016.00053
    Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity.
  2. Iancu L, Muslim A, Aazmi S, Jitaru V
    Front Microbiol, 2023;14:1234254.
    PMID: 37564294 DOI: 10.3389/fmicb.2023.1234254
    INTRODUCTION: Forensic microbiome studies expanded during the last decade, aiming to identify putative bacterial biomarkers to be used for the postmortem interval (PMI) estimation. Bacterial diversity and dynamics during decomposition are influenced by each individual's micro and macroenvironment, ante and postmortem conditions, varying across body sites and time. The skin, the largest organ of the human body, hosts a diverse microbial diversity, representing the first line of defense of a living individual. Targeting the investigation of the postmortem skin microbiome could help understanding the role of microbes during decomposition, and association with the ante and postmortem conditions.

    METHODS: The current study aimed to identify the postmortem skin microbiome signatures associated with eight human bodies, received at the Institute of Legal Medicine Iasi, Romania, during April and May 2021. A total of 162 samples (including triplicate) representing face and hands skin microbiome were investigated via Illumina MiSeq, upon arrival at the morgue (T0) and after 12 hours (T1).

    RESULTS: The taxonomic characteristics of the skin microbiota varied across different body sites. However, there were no significant differences in taxonomic profiles between collection time, T0 and T1, except for some dynamic changes in the abundance of dominant bacteria. Moreover, different microbial signatures have been associated with a specific cause of death, such as cardiovascular disease, while an elevated blood alcohol level could be associated with a decrease in bacterial richness and diversity.

    DISCUSSION: The places where the bodies were discovered seemed to play an important role in explaining the bacterial diversity composition. This study shows promising results towards finding common postmortem bacterial signatures associated with human cadavers within the first 12h at the morgue.

  3. Phang WK, Hamid MHBA, Jelip J, Mudin RNB, Chuang TW, Lau YL, et al.
    Front Microbiol, 2023;14:1126418.
    PMID: 36876062 DOI: 10.3389/fmicb.2023.1126418
    The emergence of potentially life-threatening zoonotic malaria caused by Plasmodium knowlesi nearly two decades ago has continued to challenge Malaysia healthcare. With a total of 376 P. knowlesi infections notified in 2008, the number increased to 2,609 cases in 2020 nationwide. Numerous studies have been conducted in Malaysian Borneo to determine the association between environmental factors and knowlesi malaria transmission. However, there is still a lack of understanding of the environmental influence on knowlesi malaria transmission in Peninsular Malaysia. Therefore, our study aimed to investigate the ecological distribution of human P. knowlesi malaria in relation to environmental factors in Peninsular Malaysia. A total of 2,873 records of human P. knowlesi infections in Peninsular Malaysia from 1st January 2011 to 31st December 2019 were collated from the Ministry of Health Malaysia and geolocated. Three machine learning-based models, maximum entropy (MaxEnt), extreme gradient boosting (XGBoost), and ensemble modeling approach, were applied to predict the spatial variation of P. knowlesi disease risk. Multiple environmental parameters including climate factors, landscape characteristics, and anthropogenic factors were included as predictors in both predictive models. Subsequently, an ensemble model was developed based on the output of both MaxEnt and XGBoost. Comparison between models indicated that the XGBoost has higher performance as compared to MaxEnt and ensemble model, with AUCROC values of 0.933 ± 0.002 and 0.854 ± 0.007 for train and test datasets, respectively. Key environmental covariates affecting human P. knowlesi occurrence were distance to the coastline, elevation, tree cover, annual precipitation, tree loss, and distance to the forest. Our models indicated that the disease risk areas were mainly distributed in low elevation (75-345 m above mean sea level) areas along the Titiwangsa mountain range and inland central-northern region of Peninsular Malaysia. The high-resolution risk map of human knowlesi malaria constructed in this study can be further utilized for multi-pronged interventions targeting community at-risk, macaque populations, and mosquito vectors.
  4. Liao Q, Ye Y, Li Z, Chen H, Zhuo L
    Front Microbiol, 2023;14:1170559.
    PMID: 37187536 DOI: 10.3389/fmicb.2023.1170559
    MicroRNAs (miRNAs) are short RNA molecular fragments that regulate gene expression by targeting and inhibiting the expression of specific RNAs. Due to the fact that microRNAs affect many diseases in microbial ecology, it is necessary to predict microRNAs' association with diseases at the microbial level. To this end, we propose a novel model, termed as GCNA-MDA, where dual-autoencoder and graph convolutional network (GCN) are integrated to predict miRNA-disease association. The proposed method leverages autoencoders to extract robust representations of miRNAs and diseases and meantime exploits GCN to capture the topological information of miRNA-disease networks. To alleviate the impact of insufficient information for the original data, the association similarity and feature similarity data are combined to calculate a more complete initial basic vector of nodes. The experimental results on the benchmark datasets demonstrate that compared with the existing representative methods, the proposed method has achieved the superior performance and its precision reaches up to 0.8982. These results demonstrate that the proposed method can serve as a tool for exploring miRNA-disease associations in microbial environments.
  5. Ser HL, Palanisamy UD, Yin WF, Abd Malek SN, Chan KG, Goh BH, et al.
    Front Microbiol, 2015;6:854.
    PMID: 26347733 DOI: 10.3389/fmicb.2015.00854
    A novel Streptomyces, strain MUSC 149(T) was isolated from mangrove soil. A polyphasic approach was used to study the taxonomy of MUSC 149(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was LL-diaminopimelic acid. The predominant menaquinones were identified as MK9(H8) and MK9(H6). Phylogenetic analysis indicated that closely related strains include Streptomyces rhizophilus NBRC 108885(T) (99.2% sequence similarity), S. gramineus NBRC 107863(T) (98.7%) and S. graminisoli NBRC 108883(T) (98.5%). The DNA-DNA relatedness values between MUSC 149(T) and closely related type strains ranged from 12.4 ± 3.3% to 27.3 ± 1.9%. The DNA G + C content was determined to be 72.7 mol%. The extract of MUSC 149(T) exhibited strong antioxidant activity and chemical analysis reported identification of an antioxidant agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-. These data showed that metabolites of MUSC 149(T) shall be useful as preventive agent against free-radical associated diseases. Based on the polyphasic study of MUSC 149(T), the strain merits assignment to a novel species, for which the name S. mangrovisoli sp. nov. is proposed. The type strain is MUSC 149(T) (=MCCC 1K00699(T)=DSM 100438(T)).
  6. Premarathne JMKJK, Anuar AS, Thung TY, Satharasinghe DA, Jambari NN, Abdul-Mutalib NA, et al.
    Front Microbiol, 2017;8:2254.
    PMID: 29255448 DOI: 10.3389/fmicb.2017.02254
    Campylobacter is a major foodborne pathogen frequently associated with human bacterial gastroenteritis in the world. This study was conducted to determine the prevalence and antibiotic resistance of Campylobacter spp. in the beef food system in Malaysia. A total of 340 samples consisting of cattle feces (n = 100), beef (n = 120) from wet markets and beef (n = 120) from hypermarkets were analyzed for Campylobacter spp. The overall prevalence of Campylobacter was 17.4%, consisting of 33% in cattle fecal samples, 14.2% in raw beef from wet market and 7.5% in raw beef from the hypermarket. The multiplex-polymerase chain reaction (PCR) identified 55% of the strains as C. jejuni, 26% as C. coli, and 19% as other Campylobacter spp. A high percentage of Campylobacter spp. were resistant to tetracycline (76.9%) and ampicillin (69.2%), whilst low resistance was exhibited to chloramphenicol (7.6%). The MAR Index of Campylobacter isolates from this study ranged from 0.09 to 0.73. The present study indicates the potential public health risk associated with the beef food system, hence stringent surveillance, regulatory measures, and appropriate interventions are required to minimize Campylobacter contamination and prudent antibiotic usage that can ensure consumer safety.
  7. Tan CW, Malcolm TTH, Kuan CH, Thung TY, Chang WS, Loo YY, et al.
    Front Microbiol, 2017;8:1087.
    PMID: 28659901 DOI: 10.3389/fmicb.2017.01087
    Numerous prevalence studies and outbreaks of Vibrio parahaemolyticus infection have been extensively reported in shellfish and crustaceans. Information on the quantitative detection of V. parahaemolyticus in finfish species is limited. In this study, short mackerels (Rastrelliger brachysoma) obtained from different retail marketplaces were monitored with the presence of total and pathogenic strains of V. parahaemolyticus. Out of 130 short mackerel samples, 116 (89.2%) were detected with the presence of total V. parahaemolyticus and microbial loads of total V. parahaemolyticus ranging from <3 to >10(5) MPN/g. Prevalence of total V. parahaemolyticus was found highest in wet markets (95.2%) followed by minimarkets (89.1%) and hypermarkets (83.3%). Pathogenic V. parahaemolyticus strains (tdh+ and/or trh+) were detected in 16.2% (21 of 130) of short mackerel samples. The density of tdh+ V. parahaemolyticus strains were examined ranging from 3.6 to >10(5) MPN/g and microbial loads of V. parahaemolyticus strains positive for both tdh and trh were found ranging from 300 to 740 MPN/g. On the other hand, antibiotic susceptibility profiles of V. parahaemolyticus strains isolated from short mackerels were determined through disc diffusion method in this study. Assessment of antimicrobial susceptibility profile of V. parahaemolyticus revealed majority of the isolates were highly susceptible to ampicillin sulbactam, meropenem, ceftazidime, and imipenem, but resistant to penicillin G and ampicillin. Two isolates (2.99%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.41 which shown resistance to 7 antibiotics. Results of the present study demonstrated that the occurrence of pathogenic V. parahaemolyticus strains in short mackerels and multidrug resistance of V. parahaemolyticus isolates could be a potential public health concerns to the consumer. Furthermore, prevalence data attained from the current study can be further used to develop a microbial risk assessment model to estimate health risks associated with the consumption of short mackerels contaminated with pathogenic V. parahaemolyticus.
  8. Letchumanan V, Yin WF, Lee LH, Chan KG
    Front Microbiol, 2015;6:33.
    PMID: 25688239 DOI: 10.3389/fmicb.2015.00033
    Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with V. parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh) which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance V. parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320) isolates were positive for V. parahaemolyticus. Only 10% (19/185) toxR-positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%), chloramphenicol (95%), trimethoprim-sulfamethoxazole (93%), gentamicin (85%), levofloxacin (83%), and tetracycline (82%). The chloramphenicol (catA2) and kanamycin (aphA-3) resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields.
  9. Thung TY, Radu S, Mahyudin NA, Rukayadi Y, Zakaria Z, Mazlan N, et al.
    Front Microbiol, 2017;8:2697.
    PMID: 29379488 DOI: 10.3389/fmicb.2017.02697
    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%). Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100%) were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.
  10. Khosravi Y, Loke MF, Goh KL, Vadivelu J
    Front Microbiol, 2016;7:1462.
    PMID: 27695448
    Helicobacter pylori is the dominant species of the human gastric microbiota and is present in the stomach of more than half of the human population worldwide. Colonization by H. pylori causes persistent inflammatory response and H. pylori-induced gastritis is the strongest singular risk factor for the development of gastric adenocarcinoma. However, only a small proportion of infected individuals develop malignancy. Besides H. pylori, other microbial species have also been shown to be related to gastritis. We previously reported that interspecies microbial interaction between H. pylori and S. mitis resulted in alteration of their metabolite profiles. In this study, we followed up by analyzing the changing protein profiles of H. pylori and S. mitis by LC/Q-TOF mass spectrometry to understand the different response of the two bacterial species in a multi-species micro-environment. Differentially-expressed proteins in mono- and co-cultures could be mapped into 18 biological pathways. The number of proteins involve in RNA degradation, nucleotide excision repair, mismatch repair, and lipopolysaccharide (LPS) biosynthesis were increased in co-cultured H. pylori. On the other hand, fewer proteins involve in citrate cycle, glycolysis/ gluconeogenesis, aminoacyl-tRNA biosynthesis, translation, metabolism, and cell signaling were detected in co-cultured H. pylori. This is consistent with our previous observation that in the presence of S. mitis, H. pylori was transformed to coccoid. Interestingly, phosphoglycerate kinase (PGK), a major enzyme used in glycolysis, was found in abundance in co-cultured S. mitis and this may have enhanced the survival of S. mitis in the multi-species microenvironment. On the other hand, thioredoxin (TrxA) and other redox-regulating enzymes of H. pylori were less abundant in co-culture possibly suggesting reduced oxidative stress. Oxidative stress plays an important role in tissue damage and carcinogenesis. Using the in vitro co-culture model, this study emphasized the possibility that pathogen-microbiota interaction may have a protective effect against H. pylori-associated carcinogenesis.
  11. Law JW, Ab Mutalib NS, Chan KG, Lee LH
    Front Microbiol, 2014;5:770.
    PMID: 25628612 DOI: 10.3389/fmicb.2014.00770
    The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.
  12. Tian W, Xiang X, Ma L, Evers S, Wang R, Qiu X, et al.
    Front Microbiol, 2019;10:3138.
    PMID: 32038572 DOI: 10.3389/fmicb.2019.03138
    Sphagnum-associated microbiomes are crucial to Sphagnum growth and peatland ecological functions. However, roles of rare species in bacterial communities across Sphagnum compartments are poorly understood. Here the structures of rare taxa (RT) and conditionally abundant and rare taxa (CART) from Sphagnum palustre peat (SP), S. palustre ectosphere (Ecto) and S. palustre endosphere (Endo) were investigated in the Dajiuhu Peatland, central China. Our results showed that plant compartment effects significantly altered the diversities and structures of bacterial communities. The Observed species and Simpson indices of RT and CART in alpha diversity significantly increased from Endo to SP, with those of Ecto in-between. The variations of community dissimilarities of RT and CART among compartments were consistent with those of whole bacterial communities (WBC). Network analysis indicated a non-random co-occurrence pattern of WBC and all keystone species are affiliated with RT and CART, indicating their important role in sustaining the WBC. Furthermore, the community structures of RT and CART in SP were significantly shaped by water table and total nitrogen content, which coincided with the correlations between WBC and environmental factors. Collectively, our results for the first time confirm the importance of rare species to bacterial communities through structural and predicted functional analyses, which expands our understanding of rare species in Sphagnum-associated microbial communities in subalpine peatlands.
  13. Chen JW, Lau YY, Krishnan T, Chan KG, Chang CY
    Front Microbiol, 2018;9:1104.
    PMID: 29892277 DOI: 10.3389/fmicb.2018.01104
    Pseudomonas aeruginosa is a rod-shaped Gram-negative bacterium which is notably known as a pathogen in humans, animals, and plants. Infections caused by P. aeruginosa especially in hospitalized patients are often life-threatening and rapidly increasing worldwide throughout the years. Recently, multidrug-resistant P. aeruginosa has taken a toll on humans' health due to the inefficiency of antimicrobial agents. Therefore, the rapid and advanced diagnostic techniques to accurately detect this bacterium particularly in clinical samples are indeed necessary to ensure timely and effective treatments and to prevent outbreaks. This review aims to discuss most recent of state-of-the-art molecular diagnostic techniques enabling fast and accurate detection and identification of P. aeruginosa based on well-developed genotyping techniques, e.g., polymerase chain reaction, pulse-field gel electrophoresis, and next generation sequencing. The advantages and limitations of each of the methods are also reviewed.
  14. Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS
    Front Microbiol, 2019;10:1781.
    PMID: 31428074 DOI: 10.3389/fmicb.2019.01781
    Middle East respiratory syndrome (MERS) is a deadly viral respiratory disease caused by MERS-coronavirus (MERS-CoV) infection. To date, there is no specific treatment proven effective against this viral disease. In addition, no vaccine has been licensed to prevent MERS-CoV infection thus far. Therefore, our current review focuses on the most recent studies in search of an effective MERS vaccine. Overall, vaccine candidates against MERS-CoV are mainly based upon the viral spike (S) protein, due to its vital role in the viral infectivity, although several studies focused on other viral proteins such as the nucleocapsid (N) protein, envelope (E) protein, and non-structural protein 16 (NSP16) have also been reported. In general, the potential vaccine candidates can be classified into six types: viral vector-based vaccine, DNA vaccine, subunit vaccine, nanoparticle-based vaccine, inactivated-whole virus vaccine and live-attenuated vaccine, which are discussed in detail. Besides, the immune responses and potential antibody dependent enhancement of MERS-CoV infection are extensively reviewed. In addition, animal models used to study MERS-CoV and evaluate the vaccine candidates are discussed intensively.
  15. Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, et al.
    Front Microbiol, 2020;11:580024.
    PMID: 33193209 DOI: 10.3389/fmicb.2020.580024
    Acidobacteria represents an underrepresented soil bacterial phylum whose members are pervasive and copiously distributed across nearly all ecosystems. Acidobacterial sequences are abundant in soils and represent a significant fraction of soil microbial community. Being recalcitrant and difficult-to-cultivate under laboratory conditions, holistic, polyphasic approaches are required to study these refractive bacteria extensively. Acidobacteria possesses an inventory of genes involved in diverse metabolic pathways, as evidenced by their pan-genomic profiles. Because of their preponderance and ubiquity in the soil, speculations have been made regarding their dynamic roles in vital ecological processes viz., regulation of biogeochemical cycles, decomposition of biopolymers, exopolysaccharide secretion, and plant growth promotion. These bacteria are expected to have genes that might help in survival and competitive colonization in the rhizosphere, leading to the establishment of beneficial relationships with plants. Exploration of these genetic attributes and more in-depth insights into the belowground mechanics and dynamics would lead to a better understanding of the functions and ecological significance of this enigmatic phylum in the soil-plant environment. This review is an effort to provide a recent update into the diversity of genes in Acidobacteria useful for characterization, understanding ecological roles, and future biotechnological perspectives.
  16. Al-Turki A, Murali M, Omar AF, Rehan M, Sayyed RZ
    Front Microbiol, 2023;14:1214845.
    PMID: 37829451 DOI: 10.3389/fmicb.2023.1214845
    The present crisis at hand revolves around the need to enhance plant resilience to various environmental stresses, including abiotic and biotic stresses, to ensure sustainable agriculture and mitigate the impact of climate change on crop production. One such promising approach is the utilization of plant growth-promoting rhizobacteria (PGPR) to mediate plant resilience to these stresses. Plants are constantly exposed to various stress factors, such as drought, salinity, pathogens, and nutrient deficiencies, which can significantly reduce crop yield and quality. The PGPR are beneficial microbes that reside in the rhizosphere of plants and have been shown to positively influence plant growth and stress tolerance through various mechanisms, including nutrient solubilization, phytohormone production, and induction of systemic resistance. The review comprehensively examines the various mechanisms through which PGPR promotes plant resilience, including nutrient acquisition, hormonal regulation, and defense induction, focusing on recent research findings. The advancements made in the field of PGPR-mediated resilience through multi-omics approaches (viz., genomics, transcriptomics, proteomics, and metabolomics) to unravel the intricate interactions between PGPR and plants have been discussed including their molecular pathways involved in stress tolerance. Besides, the review also emphasizes the importance of continued research and implementation of PGPR-based strategies to address the pressing challenges facing global food security including commercialization of PGPR-based bio-formulations for sustainable agricultural.
  17. Low DY, Hejndorf S, Tharmabalan RT, Poppema S, Pettersson S
    Front Microbiol, 2021;12:659465.
    PMID: 33995322 DOI: 10.3389/fmicb.2021.659465
    In the last 150 years, we have seen a significant increase in average life expectancy, associated with a shift from infectious to non-communicable diseases. The rising incidence of these diseases, for which age is often the largest risk factor, highlights the need for contemporary societies to improve healthy ageing for their growing silver generations. As ageing is an inevitable, non-reversing and highly individualised process, we need to better understand how non-genetic factors like diet choices and commensal gut microbes can modulate the biology of ageing. In this review, we discuss how geographical and ethnic variations influence habitual dietary patterns, nutrient structure, and gut microbial profiles with potential impact on the human healthspan. Several gut microbial genera have been associated with healthy elderly populations but are highly variable across populations. It seems unlikely that a universal pro-longevity gut microbiome exists. Rather, the optimal microbiome appears to be conditional on the microbial functionality acting on regional- and ethnicity-specific trends driven by cultural food context. We also highlight dietary and microbial factors that have been observed to elicit individual and clustered biological responses. Finally, we identify next generation avenues to modify otherwise fixed host functions and the individual ageing trajectory by manipulating the malleable gut microbiome with regionally adapted, personalised food intervention regimens targeted at prolonging human healthspan.
  18. Thoha H, Muawanah, Bayu Intan MD, Rachman A, Sianturi OR, Sidabutar T, et al.
    Front Microbiol, 2019;10:306.
    PMID: 30846977 DOI: 10.3389/fmicb.2019.00306
    Margalefidinium polykrikoides, an unarmored dinoflagellate, was suspected to be the causative agent of the harmful algal blooms - associated with massive fish mortalities - that have occurred continually in Lampung Bay, Indonesia, since the first bloom event in October 2012. In this study, after examination of the morphology of putative M. polykrikoides-like cysts sampled in bottom sediments, cyst bed distribution of this harmful species was explored in the inner bay. Sediment samples showed that resting cysts, including several morphotypes previously reported as M. polykrikoides, were most abundant on the northern coast of Lampung Bay, ranging from 20.6 to 645.6 cysts g-1 dry sediment. Molecular phylogeny inferred from LSU rDNA revealed that the so-called Mediterranean ribotype was detected in the sediment while M. polykrikoides motile cells, four-cell chain forming in bloom conditions, belonged to the American-Malaysian ribotype. Moreover, hyaline cysts, exclusively in the form of four-cell chains, were also recorded. Overall, these results unequivocally show that the species M. polykrikoides is abundantly present, in the form of vegetative cells, hyaline and resting cysts in an Indonesian area.
  19. Sangal V, Goodfellow M, Blom J, Tan GYA, Klenk HP, Sutcliffe IC
    Front Microbiol, 2018;9:2281.
    PMID: 30319584 DOI: 10.3389/fmicb.2018.02281
    Strains belonging to the genus Amycolatopsis are well known for the production of a number of important antimicrobials and other bioactive molecules. In this study, we have sequenced the genomes of five Amycolatopsis strains including Amycolatopsis circi DSM 45561T, Amycolatopsis palatopharyngis DSM 44832T and Amycolatopsis thermalba NRRL B-24845T. The genome sequences were analyzed with 52 other publically available Amycolatopsis genomes, representing 34 species, and 12 representatives from related genera including Saccharomonospora, Saccharopolyspora, Saccharothrix, Pseudonocardia and Thermobispora. Based on the core genome phylogeny, Amycolatopsis strains were subdivided into four major clades and several singletons. The genus Amycolatopsis is homogeneous with only three strains noted to group with other genera. Amycolatopsis halophila YIM93223T is quite distinct from other Amycolatopsis strains, both phylogenetically and taxonomically, and belongs to a distinct genus. In addition, Amycolatopsis palatopharyngis DSM 44832T and Amycolatopsis marina CGMCC4 3568T grouped in a clade with Saccharomonospora strains and showed similar taxogenomic differences to this genus as well as other Amycolatopsis strains. The study found a number of strains, particularly those identified as Amycolatopsis orientalis, whose incorrect identification could be resolved by taxogenomic analyses. Similarly, some unclassified strains could be assigned with species designations. The genome sequences of some strains that were independently sequenced by different laboratories were almost identical (99-100% average nucleotide and amino acid identities) consistent with them being the same strain, and confirming the reproducibility and robustness of genomic data. These analyses further demonstrate that whole genome sequencing can reliably resolve intra- and, inter-generic structures and should be incorporated into prokaryotic systematics.
  20. Ibrahim I, Salehmin MNI, Balachandran K, Hil Me MF, Loh KS, Abu Bakar MH, et al.
    Front Microbiol, 2023;14:1192187.
    PMID: 37520357 DOI: 10.3389/fmicb.2023.1192187
    Microbial electrosynthesis (MES) is an emerging electrochemical technology currently being researched as a CO2 sequestration method to address climate change. MES can convert CO2 from pollution or waste materials into various carbon compounds with low energy requirements using electrogenic microbes as biocatalysts. However, the critical component in this technology, the cathode, still needs to perform more effectively than other conventional CO2 reduction methods because of poor selectivity, complex metabolism pathways of microbes, and high material cost. These characteristics lead to the weak interactions of microbes and cathode electrocatalytic activities. These approaches range from cathode modification using conventional engineering approaches to new fabrication methods. Aside from cathode development, the operating procedure also plays a critical function and strategy to optimize electrosynthesis production in reducing operating costs, such as hybridization and integration of MES. If this technology could be realized, it would offer a new way to utilize excess CO2 from industries and generate profitable commodities in the future to replace fossil fuel-derived products. In recent years, several potential approaches have been tested and studied to boost the capabilities of CO2-reducing bio-cathodes regarding surface morphology, current density, and biocompatibility, which would be further elaborated. This compilation aims to showcase that the achievements of MES have significantly improved and the future direction this is going with some recommendations. Highlights - MES approach in carbon sequestration using the biotic component.- The role of microbes as biocatalysts in MES and their metabolic pathways are discussed.- Methods and materials used to modify biocathode for enhancing CO2 reduction are presented.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links