Displaying publications 161 - 180 of 219 in total

Abstract:
Sort:
  1. Sun H, Yao W, Siddique A, He F, Yue M
    Front Microbiol, 2023;14:1245416.
    PMID: 37692383 DOI: 10.3389/fmicb.2023.1245416
    INTRODUCTION: Dengue fever (DF) is a mosquito-borne viral disease caused by the dengue virus (DENV). In recent years, Hangzhou has undergone a DF epidemic, particularly in 2017, with an outbreak of 1,128 patients. The study aimed to investigate the genetic diversity and molecular evolution among the DF clinical isolates during and after the outbreak to aid in mapping its spread.

    METHODS: To understand the genetic diversity, 74 DENV-2 strains were isolated from DF epidemic cases between 2017 and 2019. Combining whole genome sequencing (WGS) technology, additional phylogenetic, haplotype, amino acid (AA) substitution, and recombination analyses were performed.

    RESULTS: The results revealed that strains from 2017 were closely related to those from Singapore, Malaysia, and Thailand, indicating an imported international transmission. Local strains from 2018 were clustered with those recovered from 2019 and were closely associated with Guangzhou isolates, suggesting a within-country transmission after the significant outbreak in 2017. Compared to DENV-2 virus P14337 (Thailand/0168/1979), a total of 20 AA substitutions were detected. Notably, V431I, T2881I, and K3291T mutations only occurred in indigenous cases from 2017, and A1402T, V1457I, Q2777E, R3189K, and Q3310R mutations were exclusively found in imported cases from 2018 to 2019. The recombination analysis indicated that a total of 14 recombination events were observed.

    CONCLUSION: This study may improve our understanding of DENV transmission in Hangzhou and provide further insight into DENV-2 transmission and the local vaccine choice.

  2. Fuloria S, Mehta J, Talukdar MP, Sekar M, Gan SH, Subramaniyan V, et al.
    Front Microbiol, 2022;13:950913.
    PMID: 35910609 DOI: 10.3389/fmicb.2022.950913
    Fermented foods have been an important component of the human diet from the time immemorial. It contains a high amount of probiotics that have been associated to a wide range of health benefits, including improved digestion and immunity. This review focuses on the indigenously prepared prebiotic- and probiotic-containing functional fermented rice (named Xaj-pani) by the Ahom Community from Assam, in Northeast India, including all the beneficial and potential effects on human health. Literature was searched from scientific databases such as PubMed, ScienceDirect and Google Scholar. Glutinous rice (commonly known as bora rice of sali variety) is primarily employed to prepare beverages that are recovered through the filtration process. The beer is normally consumed during religious rites, festivals and ritual practices, as well as being used as a refreshing healthy drink. Traditionally, it is prepared by incorporating a variety of medicinal herbs into their starter culture (Xaj-pitha) inoculum which is rich in yeasts, molds and lactic acid bacteria (LAB) and then incorporated in alcoholic beverage fermentation. The Ahom communities routinely consume this traditionally prepared alcoholic drink with no understanding of its quality and shelf life. Additionally, a finally produced dried cake, known as vekur pitha act as a source of Saccharomyces cerevisiae and can be stored for future use. Despite the rampant use in this community, the relationship between Xaj-pani's consumption, immunological response, infectious and inflammatory processes remains unknown in the presence of factors unrelated or indirectly connected to immune function. Overall, this review provides the guidelines to promote the development of prebiotic- and probiotic-containing functional fermented rice that could significantly have an impact on the health of the consumers.
  3. Deps P, Collin SM
    Front Microbiol, 2021;12:698588.
    PMID: 34566911 DOI: 10.3389/fmicb.2021.698588
    Mycobacterium lepromatosis was identified as a new species and second causal agent of Hansen's disease (HD, or leprosy) in 2008, 150years after the disease was first attributed to Mycobacterium leprae. M. lepromatosis has been implicated in a small number of HD cases, and clinical aspects of HD caused by M. lepromatosis are poorly characterized. HD is a recognized zoonosis through transmission of M. leprae from armadillos, but the role of M. lepromatosis as a zoonotic agent of HD is unknown. M. lepromatosis was initially associated with diffuse lepromatous leprosy, but subsequent case reports and surveys have linked it to other forms of HD. HD caused by M. lepromatosis has been reported from three endemic countries: Brazil, Myanmar, and Philippines, and three non-endemic countries: Mexico, Malaysia, and United States. Contact with armadillos in Mexico was mentioned in 2/21 M. lepromatosis HD case reports since 2008. M. lepromatosis in animals has been investigated only in non-endemic countries, in squirrels and chipmunks in Europe, white-throated woodrats in Mexico, and armadillos in the United States. To date, there have only been a small number of positive findings in Eurasian red squirrels in Britain and Ireland. A single study of environmental samples found no M. lepromatosis in soil from a Scottish red squirrel habitat. Future studies must focus on endemic countries to determine the true proportion of HD cases caused by M. lepromatosis, and whether viable M. lepromatosis occurs in non-human sources.
  4. Khumairah FH, Setiawati MR, Fitriatin BN, Simarmata T, Alfaraj S, Ansari MJ, et al.
    Front Microbiol, 2022;13:905210.
    PMID: 35770168 DOI: 10.3389/fmicb.2022.905210
    Salinity is one of the most damaging abiotic stresses due to climate change impacts that affect the growth and yield of crops, especially in lowland rice fields and coastal areas. This research aimed to isolate potential halotolerant plant growth-promoting rhizobacteria from different rhizo-microbiome and use them as effective bioinoculants to improve rice growth under salinity stress conditions. Bioassay using rice seedlings was performed in a randomized block design consisting of 16 treatments (control and 15 bacterial isolates) with three replications. Results revealed that isolates S3, S5, and S6 gave higher shoot height, root length, and plant dry weight compared with control (without isolates). Based on molecular characteristics, isolates S3 and S5 were identified as Pseudomonas stutzeri and Klebsiella pneumonia. These isolates were able to promote rice growth under salinity stress conditions as halotolerant plant growth-promoting rhizobacteria. These three potent isolates were found to produce indole-3-acetic acid and nitrogenase.
  5. Kaliaperumal K, Salendra L, Liu Y, Ju Z, Sahu SK, Elumalai S, et al.
    Front Microbiol, 2023;14:1216928.
    PMID: 37849927 DOI: 10.3389/fmicb.2023.1216928
    INTRODUCTION: Fungus-derived secondary metabolites are fascinating with biomedical potential and chemical diversity. Mining endophytic fungi for drug candidates is an ongoing process in the field of drug discovery and medicinal chemistry. Endophytic fungal symbionts from terrestrial plants, marine flora, and fauna tend to produce interesting types of secondary metabolites with biomedical importance of anticancer, antiviral, and anti-tuberculosis properties.

    METHODS: An organic ethyl acetate extract of Penicillium verruculosum sponge-derived endophytic fungi from Spongia officinalis yielded seven different secondary metabolites which are purified through HPLC. The isolated compounds are of averufin (1), aspergilol-A (2), sulochrin (3), monomethyl sulochrin (4), methyl emodin (5), citreorosein (6), and diorcinol (7). All the seven isolated compounds were characterized by high-resolution NMR spectral studies. All isolated compounds', such as anticancer, antimicrobial, anti-tuberculosis, and antiviral, were subjected to bioactivity screening.

    RESULTS: Out of seven tested compounds, compound (1) exhibits strong anticancer activity toward myeloid leukemia. HL60 cell lines have an IC50 concentration of 1.00μm, which is nearly significant to that of the standard anticancer drug taxol. A virtual computational molecular docking approach of averufin with HL60 antigens revealed that averufin binds strongly with the protein target alpha, beta-tubulin (1JFF), with a -10.98 binding score. Consecutive OSIRIS and Lipinski ADME pharmacokinetic validation of averufin with HL60 antigens revealed that averufin has good pharmacokinetic properties such as drug score, solubility, and mutagenic nature. Furthermore, aspergilol-A (2) is the first report on the Penicillium verruculosum fungal strain.

    DISCUSSION: We concluded that averufin (1) isolated from Penicillium verruculosum can be taken for further preliminary clinical trials like animal model in-vivo studies and pharmacodynamic studies. A future prospect of in-vivo anticancer screening of averufin can be validated through the present experimental findings.

  6. Philip N, Jani J, Azhari NN, Sekawi Z, Neela VK
    Front Microbiol, 2021;12:753328.
    PMID: 34803975 DOI: 10.3389/fmicb.2021.753328
    The zoonotic disease leptospirosis is caused by pathogenic species of the genus Leptospira. With the advancement of studies in leptospirosis, several new species are being reported. It has always been a query, whether Leptospira species, serovars, and strains isolated from different geographical locations contribute to the difference in the disease presentations and severity. In an epidemiological surveillance study performed in Malaysia, we isolated seven novel intermediate and saprophytic species (Leptospira semungkisensis, Leptospira fletcheri, Leptospira langatensis, Leptospira selangorensis, Leptospira jelokensis, Leptospira perdikensis, Leptospira congkakensis) from environments and three pathogenic species from rodents (Leptospira borgpetersenii strain HP364, Leptospira weilii strain SC295, Leptospira interrogans strain HP358) trapped in human leptospirosis outbreak premises. To evaluate the pathogenic potential of these isolates, we performed an in vivo and in silico virulence analysis. Environmental isolates and strain HP364 did not induce any clinical manifestations in hamsters. Strain SC295 caused inactivity and weight loss with histopathological changes in kidneys, however, all hamsters survived until the end of the experiment. Strain HP358 showed a high virulent phenotype as all infected hamsters died or were moribund within 7 days postinfection. Lungs, liver, and kidneys showed pathological changes with hemorrhage as the main presentation. In silico analysis elucidated the genome size of strain HP358 to be larger than strains HP364 and SC295 and containing virulence genes reported in Leptospira species and a high number of specific putative virulence factors. In conclusion, L. interrogans strain HP358 was highly pathogenic with fatal outcome. The constituent of Leptospira genomes may determine the level of disease severity and that needs further investigations.
  7. Law JW, Ab Mutalib NS, Chan KG, Lee LH
    Front Microbiol, 2014;5:770.
    PMID: 25628612 DOI: 10.3389/fmicb.2014.00770
    The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.
  8. Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP
    Front Microbiol, 2017;8:2249.
    PMID: 29238324 DOI: 10.3389/fmicb.2017.02249
    Enterovirus 71 (EV71) is a global infectious disease that affects millions of people. The virus is the main etiological agent for hand, foot, and mouth disease with outbreaks and epidemics being reported globally. Infection can cause severe neurological, cardiac, and respiratory problems in children under the age of 5. Despite on-going efforts, little is known about the pathogenesis of EV71, how the host immune system responds to the virus and the molecular mechanisms behind these responses. Moreover, current animal models remain limited, because they do not recapitulate similar disease patterns and symptoms observed in humans. In this review the role of the host-viral interactions of EV71 are discussed together with the various models available to examine: how EV71 utilizes its proteins to cleave host factors and proteins, aiding virus replication; how EV71 uses its own viral proteins to disrupt host immune responses and aid in its immune evasion. These discoveries along with others, such as the EV71 crystal structure, have provided possible targets for treatment and drug interventions.
  9. Chen JW, Lau YY, Krishnan T, Chan KG, Chang CY
    Front Microbiol, 2018;9:1104.
    PMID: 29892277 DOI: 10.3389/fmicb.2018.01104
    Pseudomonas aeruginosa is a rod-shaped Gram-negative bacterium which is notably known as a pathogen in humans, animals, and plants. Infections caused by P. aeruginosa especially in hospitalized patients are often life-threatening and rapidly increasing worldwide throughout the years. Recently, multidrug-resistant P. aeruginosa has taken a toll on humans' health due to the inefficiency of antimicrobial agents. Therefore, the rapid and advanced diagnostic techniques to accurately detect this bacterium particularly in clinical samples are indeed necessary to ensure timely and effective treatments and to prevent outbreaks. This review aims to discuss most recent of state-of-the-art molecular diagnostic techniques enabling fast and accurate detection and identification of P. aeruginosa based on well-developed genotyping techniques, e.g., polymerase chain reaction, pulse-field gel electrophoresis, and next generation sequencing. The advantages and limitations of each of the methods are also reviewed.
  10. Huang T, Su LJ, Zeng NK, Lee SML, Lee SS, Thi BK, et al.
    Front Microbiol, 2022;13:1087756.
    PMID: 36741898 DOI: 10.3389/fmicb.2022.1087756
    Hainan is the second largest island in China with the most extensive and well-preserved tropical forests and is also the largest island of the Indo Burma Biodiversity Hotspot. It provides in situ conservation for the unique ecosystem of the island. Recent studies have shown that there are diverse fungal species in Hainan. In this study, about 40 collections of the genus Amanita have been studied based on the morphology and molecular systematics, including 35 Chinese specimens (24 from Hainan, and eleven from other regions) and three specimens from other countries (Singapore and Malaysia). In total, five new species belonging to Amanita section Validae are described: A. cacaina, A. parvigrisea, A. pseudofritillaria, A. pseudosculpta, and A. yangii. Amanita parvifritillaria is recorded for the first time in Hainan. It is also the first report of this fungus occurring, outside Yunnan Province, China. Among the five new species, two are unique in this section because of the appendiculate pileus margin and the absence of an annulus. Based on these new findings, the diagnosis of the section Validae should be slightly modified to include a few species with appendiculate margin and the lack of annulus.
  11. Amobonye A, Aruwa CE, Aransiola S, Omame J, Alabi TD, Lalung J
    Front Microbiol, 2023;14:1207792.
    PMID: 37502403 DOI: 10.3389/fmicb.2023.1207792
    The ability of fungal species to produce a wide range of enzymes and metabolites, which act synergistically, makes them valuable tools in bioremediation, especially in the removal of pharmaceutically active compounds (PhACs) from contaminated environments. PhACs are compounds that have been specifically designed to treat or alter animal physiological conditions and they include antibiotics, analgesics, hormones, and steroids. Their detrimental effects on all life forms have become a source of public outcry due their persistent nature and their uncontrolled discharge into various wastewater effluents, hospital effluents, and surface waters. Studies have however shown that fungi have the necessary metabolic machinery to degrade PhACs in complex environments, such as soil and water, in addition they can be utilized in bioreactor systems to remove PhACs. In this regard, this review highlights fungal species with immense potential in the biodegradation of PhACs, their enzymatic arsenal as well as the probable mechanism of biodegradation. The challenges encumbering the real-time application of this promising bioremediative approach are also highlighted, as well as the areas of improvement and future perspective. In all, this paper points researchers to the fact that fungal bioremediation is a promising strategy for addressing the growing issue of pharmaceutical contamination in the environment and can help to mitigate the negative impacts on ecosystems and human health.
  12. Vitzilaiou E, Aunsbjerg SD, Mahyudin NA, Knøchel S
    Front Microbiol, 2020;11:816.
    PMID: 32431679 DOI: 10.3389/fmicb.2020.00816
    Filamentous yeast species belonging to the closely related Saprochaete clavata and Magnusiomyces spicifer were recently found to dominate biofilm communities on the retentate and permeate surface of Reverse Osmosis (RO) membranes used in a whey water treatment system after CIP (Cleaning-In-Place). Microscopy revealed that the two filamentous yeast species can cover extensive areas due to their large cell size and long hyphae formation. Representative strains from these species were here further characterized and displayed similar physiological and biochemical characteristics. Both strains tested were able to grow in twice RO-filtrated permeate water and metabolize the urea present. Little is known about the survival characteristics of these strains. Here, their tolerance toward heat (60, 70, and 80°C) and Ultraviolet light (UV-C) treatment at 255 nm using UV-LED was assessed as well as their ability to form biofilm and withstand cleaning associated stress. According to the heat tolerance experiments, the D60°C of S. clavata and M. spicifer is 16.37 min and 7.24 min, respectively, while a reduction of 3.5 to >4.5 log (CFU/mL) was ensured within 5 min at 70°C. UV-C light at a dose level 10 mJ/cm2 had little effect, while doses of 40 mJ/cm2 and upward ensured a ≥4log reduction in a static laboratory scale set-up. The biofilm forming potential of one filamentous yeast and one budding yeast, Sporopachydermia lactativora, both isolated from the same biofilm, was compared in assays employing flat-bottomed polystyrene microwells and peg lids, respectively. In these systems, employing both nutrient rich as well as nutrient poor media, only the filamentous yeast was able to create biofilm. However, on RO membrane coupons in static systems, both the budding yeast and a filamentous yeast were capable of forming single strain biofilms and when these coupons were exposed to different simulations of CIP treatments both the filamentous and budding yeast survived these. The dominance of these yeasts in some filter systems tested, their capacity to adhere and their tolerance toward relevant stresses as demonstrated here, suggest that these slow growing yeasts are well suited to initiate microbial biofouling on surfaces in low nutrient environments.
  13. Muria-Gonzalez MJ, Yeng Y, Breen S, Mead O, Wang C, Chooi YH, et al.
    Front Microbiol, 2020;11:466.
    PMID: 32269554 DOI: 10.3389/fmicb.2020.00466
    Septoria nodorum blotch is a major disease of wheat caused by the fungus Parastagonospora nodorum. Recent studies have demonstrated that secondary metabolites, including polyketides and non-ribosomal peptides, produced by the pathogen play important roles in disease and development. However, there is currently no knowledge on the composition or biological activity of the volatile organic compounds (VOCs) secreted by P. nodorum. To address this, we undertook a series of growth and phytotoxicity assays and demonstrated that P. nodorum VOCs inhibited bacterial growth, were phytotoxic and suppressed self-growth. Mass spectrometry analysis revealed that 3-methyl-1-butanol, 2-methyl-1-butanol, 2-methyl-1-propanol, and 2-phenylethanol were dominant in the VOC mixture and phenotypic assays using these short chain alcohols confirmed that they were phytotoxic. Further analysis of the VOCs also identified the presence of multiple sesquiterpenes of which four were identified via mass spectrometry and nuclear magnetic resonance as β-elemene, α-cyperone, eudesma-4,11-diene and acora-4,9-diene. Subsequent reverse genetics studies were able to link these molecules to corresponding sesquiterpene synthases in the P. nodorum genome. However, despite extensive testing, these molecules were not involved in either of the growth inhibition or phytotoxicity phenotypes previously observed. Plant assays using mutants of the pathogen lacking the synthetic genes revealed that the identified sesquiterpenes were not required for disease formation on wheat leaves. Collectively, these data have significantly extended our knowledge of the VOCs in fungi and provided the basis for further dissecting the roles of sesquiterpenes in plant disease.
  14. Kalidasan V, Theva Das K
    Front Microbiol, 2020;11:46.
    PMID: 32082282 DOI: 10.3389/fmicb.2020.00046
    There is a continuous search for an HIV cure as the success of ART in blocking HIV replication and the role of CD4+ T cells in HIV pathogenesis and immunity do not entirely eradicate HIV. The Berlin patient, who is virus-free, serves as the best model for a 'sterilizing cure' and many experts are trying to mimic this approach in other patients. Although failures were reported among Boston and Essen patients, the setbacks have provided valuable lessons to strengthen cure strategies. Following the Berlin patient, two more patients known as London and Düsseldorf patients might be the second and third person to be cured of HIV. In all the cases, the patients underwent chemotherapy regimen due to malignancy and hematopoietic stem cell transplantation (HSCT) which required matching donors for CCR5Δ32 mutation - an approach that may not always be feasible. The emergence of newer technologies, such as long-acting slow-effective release ART (LASER ART) and CRISPR/Cas9 could potentially overcome the barriers due to HIV latency and persistency and eliminate the need for CCR5Δ32 mutation donor. Appreciating the failure and success stories learned from these HIV breakthroughs would provide some insight for future HIV eradication and cure strategies.
  15. Lalarukh I, Al-Dhumri SA, Al-Ani LKT, Hussain R, Al Mutairi KA, Mansoora N, et al.
    Front Microbiol, 2022;13:813415.
    PMID: 35801109 DOI: 10.3389/fmicb.2022.813415
    Less nutrient availability and drought stress are some serious concerns of agriculture. Both biotic and abiotic stress factors have the potential to limit crop productivity. However, several organic extracts obtained from moringa leaves may induce immunity in plants under nutritional and drought stress for increasing their survival. Additionally, some rhizobacterial strains have the ability to enhance root growth for better nutrient and water uptake in stress conditions. To cover the knowledge gap on the interactive effects of beneficial rhizobacteria and moringa leaf extracts (MLEs), this study was conducted. The aim of this experimental study was to investigate the effectiveness of sole and combined use of rhizobacteria and MLEs against nutritional and drought stress in wheat. Nitrogen-fixing bacteria Pseudomonas aeruginosa (Pa) (108 CFU ml-1) was inoculated to wheat plants with and without foliar-applied MLEs at two different concentrations (MLE 1 = 1:15 v/v and MLE 2 = 1:30 v/v) twice at 25 and 35 days after seed sowing (50 ml per plant) after the establishment of drought stress. Results revealed that Pa + MLE 2 significantly increased fresh weight (FW), dry weight (DW), lengths of roots and shoot and photosynthetic contents of wheat. A significant enhancement in total soluble sugars, total soluble proteins, calcium, potassium, phosphate, and nitrate contents validated the efficacious effect of Pa + MLE 2 over control-treated plants. Significant decrease in sodium, proline, glycine betaine, electrolyte leakage, malondialdehyde, hydrogen peroxide, superoxide dismutase (SOD), and peroxide (POD) concentrations in wheat cultivated under drought stress conditions also represents the imperative role of Pa + MLE 2 over control. In conclusion, Pa + MLE 2 can alleviate nutritional stress and drought effects in wheat. More research in this field is required to proclaim Pa + MLE 2 as the most effective amendment against drought stress in distinct agroecological zones, different soil types, and contrasting wheat cultivars worldwide.
  16. Zhang X, Cheung S, Wang J, Zhang G, Wei Y, Liu H, et al.
    Front Microbiol, 2022;13:806390.
    PMID: 35283844 DOI: 10.3389/fmicb.2022.806390
    Marine picocyanobacteria Synechococcus exhibit highly diverse pigment types (PTs) and hence possess great advantage to utilize different spectrum of light effectively and to occupy a wide range of light niches. In this study, we explored the diversity of Synechococcus PTs in the eastern Indian Ocean (EIO), surface water of Strait of Malacca (SSM), and coastal waters of Sri Lanka (SSL). All the detected PTs were phycourobilin (PUB) containing PT 3 and showed distinct distribution patterns. Low PUB PT 3a and partial chromatic acclimater PT 3eA dominated in coastal and shallow waters (SSM and SSL). In contrast, high PUB and chromatic acclimaters PT 3dA and PT 3c/3dB were mainly distributed in open ocean (EIO). PT 3dA and PT 3c/3dB occurred at similar depths of the lower euphotic layers but showed distinct distribution pattern that are partially exclusive, indicating that they compete with each other for the same light niche. Interestingly, the newly described PT 3f was detected with high relative abundances at all stations and particularly dominated in the upper euphotic layer in EIO, which was confirmed with PT-specific quantitative polymerase chain reaction (qPCR). The relative abundance of PT 3f was negatively correlated with nutrient level, implying that PT 3f is adapted to oligotrophic waters. Pronounced niche partition of different PTs was observed in the upper and lower layers of euphotic zone in EIO and SSM/SSL. Light, nutrients, and strong stratification may play important roles in the niche partition of different PTs. Further analysis about ecologically significant taxonomic units revealed high diversity within each PT at different locations, which provided insights for understanding specific PT with wide range of niches.
  17. Othman M, Ariff AB, Rios-Solis L, Halim M
    Front Microbiol, 2017;8:2285.
    PMID: 29209295 DOI: 10.3389/fmicb.2017.02285
    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery.
  18. Lee LH, Ab Mutalib NS, Law JW, Wong SH, Letchumanan V
    Front Microbiol, 2018;9:2513.
    PMID: 30410472 DOI: 10.3389/fmicb.2018.02513
    Vibrio parahaemolyticus, a Gram-negative halophilic bacterium is often associated with fish and fishery products, thus causing gastroenteritis in humans upon ingestion of contaminated food. V. parahaemolyticus has become a globally well-known pathogen with yearly reported cases in many countries. This study aimed to discover the antibiotic resistance patterns of V. parahaemolyticus as well as detect Carbapenem resistant isolates from marine and freshwater fish in Selangor. A total of 240 freshwater and marine fish samples collected from wet market and supermarket in Selangor were tested for the presence of V. parahaemolyticus. All the fish samples were determined positive for V. parahaemolyticus using conventional microbiological culture-based method. The toxR gene were detected via polymerase chain reaction (PCR) in 165/240 (69%) isolates. The two-virulence factor of V. parahaemolyticus, thermostable direct hemolysin (tdh) and TDH-related hemolysin (trh) was screened via PCR. As such, four isolates were trh+and none were tdh+. Majority of the isolates presented high resistance to ampicillin (88%), amikacin (64%), and kanamycin (50%). In addition, this study identified 19-imipenem resistant isolates isolated from freshwater and marine fish samples. Further analysis of these 19-imipenem resistant isolates revealed that the resistance toward imipenem was plasmid mediated after plasmid curing assay. The multiple antibiotics resistance index was >0.2 for 70% of the isolates. In summary, the results confirm the presence of V. parahaemolyticus in freshwater and marine fish samples in Selangor, Malaysia. To our best knowledge, this is the first report discovering the antibiotic resistant patterns and Carbapenem-resistant isolates of V. parahaemolyticus isolated from marine and freshwater fish samples in Selangor.
  19. Norlia M, Jinap S, Nor-Khaizura MAR, Radu S, Samsudin NIP, Azri FA
    Front Microbiol, 2019;10:2602.
    PMID: 31824445 DOI: 10.3389/fmicb.2019.02602
    Aflatoxin contamination in foods is a global concern as they are carcinogenic, teratogenic and mutagenic compounds. The aflatoxin-producing fungi, mainly from the Aspergillus section Flavi, are ubiquitous in nature and readily contaminate various food commodities, thereby affecting human's health. The incidence of aflatoxigenic Aspergillus spp. and aflatoxins in various types of food, especially raw peanuts and peanut-based products along the supply chain has been a concern particularly in countries having tropical and sub-tropical climate, including Malaysia. These climatic conditions naturally support the growth of Aspergillus section Flavi, especially A. flavus, particularly when raw peanuts and peanut-based products are stored under inappropriate conditions. Peanut supply chain generally consists of several major stakeholders which include the producers, collectors, exporters, importers, manufacturers, retailers and finally, the consumers. A thorough examination of the processes along the supply chain reveals that Aspergillus section Flavi and aflatoxins could occur at any step along the chain, from farm to table. Thus, this review aims to give an overview on the prevalence of Aspergillus section Flavi and the occurrence of aflatoxins in raw peanuts and peanut-based products, the impact of aflatoxins on global trade, and aflatoxin management in peanuts with a special focus on peanut supply chain in Malaysia. Furthermore, aflatoxin detection and quantification methods as well as the identification of Aspergillus section Flavi are also reviewed herein. This review could help to shed light to the researchers, peanut stakeholders and consumers on the risk of aflatoxin contamination in peanuts along the supply chain.
  20. Gan HM, Szegedi E, Fersi R, Chebil S, Kovács L, Kawaguchi A, et al.
    Front Microbiol, 2019;10:1896.
    PMID: 31456792 DOI: 10.3389/fmicb.2019.01896
    Crown gall (CG) is a globally distributed and economically important disease of grapevine and other important crop plants. The causal agent of CG is Agrobacterium or Allorhizobium strains that harbor a tumor-inducing plasmid (pTi). The microbial community within the CG tumor has not been widely elucidated and it is not known if certain members of this microbial community promote or inhibit CG. This study investigated the microbiotas of grapevine CG tumor tissues from seven infected vineyards located in Hungary, Japan, Tunisia, and the United States. Heavy co-amplification of grapevine chloroplast and mitochondrial ribosomal RNA genes was observed with the widely used Illumina V3-V4 16S rRNA gene primers, requiring the design of a new reverse primer to enrich for bacterial 16S rRNA from CG tumors. The operational taxonomic unit (OTU) clustering approach is not suitable for CG microbiota analysis as it collapsed several ecologically distinct Agrobacterium species into a single OTU due to low interspecies genetic divergence. The CG microbial community assemblages were significantly different across sampling sites (ANOSIM global R = 0.63, p-value = 0.001) with evidence of site-specific differentially abundant ASVs. The presence of Allorhizobium vitis in the CG microbiota is almost always accompanied by Xanthomonas and Novosphingobium, the latter may promote the spread of pTi plasmid by way of acyl-homoserine lactone signal production, whereas the former may take advantage of the presence of substrates associated with plant cell wall growth and repair. The technical and biological insights gained from this study will contribute to the understanding of complex interaction between the grapevine and its microbial community and may facilitate better management of CG disease in the future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links