Displaying publications 161 - 180 of 364 in total

Abstract:
Sort:
  1. Ng TJ, Teo MYM, Liew DS, Effiong PE, Hwang JS, Lim CSY, et al.
    PeerJ, 2019;7:e6639.
    PMID: 31106043 DOI: 10.7717/peerj.6639
    Background: Hydra actinoporin like toxin -1 (HALT-1), is a small 18.5 kDa pore forming toxin derived from Hydra magnipapillata which has been shown to elicit strong haemolytic and cytolytic activity when in contact with cell membranes. Due to its cytotoxic potency, HALT-1 was further investigated for its potential as a toxin moiety candidate in immunotoxin developmental efforts, ideally as a form of targeted therapy against cancer.

    Methods: In this study, wtHALT-1 (wild type) and its Y110A mutated binding domain counterpart (mHALT-1) were produced and evaluated for their cytotoxic and apoptotic effects on various cancer cell lines. A total of seven different tumour and non-tumour cell lines including HeLa, HepG2, SW-620, MCF-7, CCD841CoN, NHDF and HCT116 were used. Immunofluorescence assays were used to observe membrane binding and localization changes between both HALT-1 recombinant proteins based on 6xHis-tag detection.

    Result: Based on MTT data, mHALT-1 demonstrated a significant reduction of 82% ±  12.21% in cytotoxic activity across all cell lines after the membrane recognition domain had been mutated in comparison to the wtHALT-1. Annexin V FITC/PI assay data also indicated that HeLa, HepG2 and MCF-7 demonstrated an apoptosis-mediated cell death after being treated with wtHALT-1. Additionally, a notable difference between wtHALT-1 and mHALT-1 binding affinity was clearly observed where emission of green fluorescence along the cell membrane was observed only in wtHALT-1 treated cells.

    Discussion: These results suggest that mHALT-1 (Y110A) can be potentially developed as a toxin-moiety candidate for the development of future immunotoxins against various human cell-based diseases.

  2. Fazhan H, Waiho K, Quinitio E, Baylon JC, Fujaya Y, Rukminasari N, et al.
    PeerJ, 2020;8:e8066.
    PMID: 31915566 DOI: 10.7717/peerj.8066
    There are four species of mud crabs within the genus Scylla, and most of them live sympatrically in the equatorial region. Apart from a report in Japan about the finding of a natural Scylla hybrid more than a decade ago after the division of genus Scylla into four species by Keenan, Davie & Mann (1998), no subsequent sighting was found. Thus, this study investigates the possible natural occurrence of potential hybridization among Scylla species in the wild. A total of 76,211 individuals from mud crab landing sites around the Malacca Straits, South China Sea and Sulu Sea were screened. In addition to the four-purebred species, four groups (SH 1, n = 2, 627; SH 2, n = 136; SH 3, n = 1; SH 4, n = 2) with intermediate characteristics were found, mostly at Sulu Sea. Discriminant Function Analysis revealed that all Scylla species, including SH 1 - 4, are distinguishable via their morphometric ratios. The most powerful discriminant ratios for each character and the top five discriminant ratios of males and females were suggested. The carapace width of SH 1 males and females were significantly smaller than pure species. Based on the discriminant ratios and the description of morphological characters, we hypothesize that the additional four groups of Scylla with intermediate characteristics could be presumed hybrids. Future work at the molecular level is urgently needed to validate this postulate.
  3. Saaban S, Yasak MN, Gumal M, Oziar A, Cheong F, Shaari Z, et al.
    PeerJ, 2020;8:e8209.
    PMID: 32002318 DOI: 10.7717/peerj.8209
    The need for conservation scientists to produce research of greater relevance to practitioners is now increasingly recognized. This study provides an example of scientists working alongside practitioners and policy makers to address a question of immediate relevance to elephant conservation in Malaysia and using the results to inform wildlife management policy and practice including the National Elephant Conservation Action Plan for Peninsular Malaysia. Since ensuring effective conservation of elephants in the Endau Rompin Landscape (ERL) in Peninsular Malaysia is difficult without data on population parameters we (1) conducted a survey to assess the size of the elephant population, (2) used that information to assess the viability of the population under different management scenarios including translocation of elephants out of the ERL (a technique long used in Malaysia to mitigate human-elephant conflict (HEC)), and (3) assessed a number of options for managing the elephant population and HEC in the future. Our dung-count based survey in the ERL produced an estimate of 135 (95% CI [80-225]) elephants in the 2,500 km2 area. The population is thus of national significance, containing possibly the second largest elephant population in Peninsular Malaysia, and with effective management elephant numbers could probably double. We used the data from our survey plus other sources to conduct a population viability analysis to assess relative extinction risk under different management scenarios. Our results demonstrate that the population cannot sustain even very low levels of removal for translocation or anything other than occasional poaching. We describe, therefore, an alternative approach, informed by this analysis, which focuses on in situ management and non-translocation-based methods for preventing or mitigating HEC. The recommended approach includes an increase in law enforcement to protect the elephants and their habitat, maintenance of habitat connectivity between the ERL and other elephant habitat, and a new focus on adaptive management.
  4. Mohamed Nasir N, Hiji J, Jayapalan JJ, Hashim OH
    PeerJ, 2020;8:e8248.
    PMID: 32030317 DOI: 10.7717/peerj.8248
    Background: Most human hairs collected at old crime scenes do not contain nuclear DNA and are therefore of less value for forensic investigations. In the present study, hair shaft proteins were extracted from 40 healthy subjects between the ages of 21 to 40 years and profiled using gel electrophoresis-based proteomics to determine if they can be used to distinguish gender and ethnicity.

    Methods: Extraction of the human hair shaft proteins was performed using a newly developed alkaline solubilisation method. The extracts were profiled by 2-dimensional electrophoresis and resolved protein spots were identified by mass spectrometry and queried against the human hair database. The study was then followed-up by immunoblotting of the identified hair shaft keratin of interest using commercially available antibodies.

    Results: Separation of the human hair shaft proteins by 2-dimensional electrophoresis generated improved and highly resolved profiles. Comparing the hair shaft protein profiles of 10 female with 10 male subjects and their identification by mass spectrometry and query of the human hair database showed significant altered abundance of truncated/processed type-II keratin peptides K81 (two spots), K83 (one spot) and K86 (three spots). The 2-dimensional electrophoresis profiling of 30 hair shaft samples taken from women of similar age range but from three distinctive ethnic subpopulations in Malaysia further showed significant altered abundance of one type-I and four type-II truncated/processed keratin peptides including K33b, K81, K83 and K86 (2 spots) between at least two of the ethnic groups. When a followed-up immunoblotting experiment was performed to detect the relative expression of the K86 peptides using commercialised antibodies, similar trends of expression were obtained. The present data, when taken together, demonstrated the potential use of keratin peptide signatures of the human hair shaft to distinguish gender and ethnicity although this needs to be further substantiated in a larger scale study.

  5. Chen XW, Nazri Shafei M, Abdul Aziz Z, Nazifah Sidek N, Imran Musa K
    PeerJ, 2020;8:e8378.
    PMID: 32095319 DOI: 10.7717/peerj.8378
    Background: Diabetes and dyslipidemia are significantly associated with stroke recurrence, yet the evidence for this relationship is conflicting. Consequently, the parameters in the glucose and lipid profiles may inform us regarding their relationship with stroke recurrence, thus enhancing the physicians' clinical decision-making.

    Aim: This study sought to investigate whether glucose and lipid profiles could prognosticate stroke recurrence in Malaysia.

    Methods: We conducted a retrospective hospital-based study where we analyzed the first-ever stroke cases regarding about which the Malaysia National Stroke Registry was informed between 2009 and 2017, that fulfilled this study's criteria, and that were followed for stroke recurrence. Using the Cox proportional hazard regression analysis, we estimated the adjusted hazard ratios (HRs), which reflected the prognostic effect of the primary variables (i.e., glucose and lipid profiles on the first-stroke admission) on stroke recurrence.

    Results: Among the 8,576 first-ever stroke patients, 394 (4.6%) experienced a subsequent first stroke recurrence event. The prognostic effect measured by univariable Cox regression showed that, when unadjusted, ten variables have prognostic value with regards to stroke recurrence. A multivariable regression analysis revealed that glucose was not a significant prognostic factor (adjusted HR 1.28; 95% CI [1.00-1.65]), while triglyceride level was the only parameter in the lipid profile found to have an independent prognostication concerning stroke recurrence (adjusted HR: 1.28 to 1.36).

    Conclusions: Triglyceride could independently prognosticate stroke recurrence, which suggests the role of physicians in intervening hypertriglyceridemia. In line with previous recommendations, we call for further investigations in first-ever stroke patients with impaired glucose and lipid profiles and suggest a need for interventions in these patients.

  6. Mohd Ghani F, Bhassu S
    PeerJ, 2019;7:e8107.
    PMID: 31875142 DOI: 10.7717/peerj.8107
    The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
  7. Grinang J, Das I, Ng PKL
    PeerJ, 2019;7:e6205.
    PMID: 30783559 DOI: 10.7717/peerj.6205
    The taxonomy of freshwater crabs requires a paradigm change in methodological approaches, particularly in investigations that use morphological techniques. The traditional morphometric approach (two-dimensional measurements) tends to be inappropriate for the identification of freshwater crabs due to their variable external morphology and lack of gonopods (conventionally used for the identification of male crabs) in females. In this study, we explore the potential use of the geometric morphometric technique for identification of female freshwater crabs, and identify taxonomic key characteristics of species. The shape of the carapace could be a good characteristic for the identification of female crabs, especially when the geometric morphometric technique is used. It was observed that the shape of the carapace has an advantage over the shape of the pleon and chela because its relatively flat orientation allows more consistent and easier data preparation for geometric morphometric analysis. The geometric morphometric technique is inexpensive, relatively less time consuming to employ, and accurate. This technique is convenient when dissection to examine the gonopods is not possible, which can damage the specimen in the case of endangered or rare species. Since the technique was used herein for only two species, more compelling and extensive evidence is needed before the reliability of the method can be proven.
  8. Sotoodehnia P, Mazlan N, Mohd Saud H, Samsuri WA, Habib SH, Soltangheisi A
    PeerJ, 2019;7:e6418.
    PMID: 30918747 DOI: 10.7717/peerj.6418
    Background: Plant growth-promoting rhizobacteria (PGPR) are highly promising biofertilizers that contribute to eco-friendly sustainable agriculture. There have been many reports on the anti-microbial properties of nanoparticles (NPs). Toxic effects of NPs under laboratory conditions have also reported; however, there is a lack of information about their uptake and mobility in organisms under environmental conditions. There is an urgent need to determine the highest concentration of NPs which is not detrimental for growth and proliferation of PGPR.

    Methods: Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to measure the size and shape of NPs. Minimum inhibitory concentrations (MIC) of nano-silver on selected beneficial microbes and Ralstonia solanacearum were measured using the microdilution broth method. The percentage of seed germination was measured under in vitro conditions.

    Results: NPs were spherical with a size of 16 ± 6 nm. Nano-silver at 12-40 mg l-1 inhibited the growth of bacteria. Seed application at 40 mg l-1 protected seeds from R. solanacearum and improved the rate of seed germination.

  9. Liew SM, Rajasekaram G, Puthucheary SA, Chua KH
    PeerJ, 2019;7:e6217.
    PMID: 30697478 DOI: 10.7717/peerj.6217
    Background: Pseudomonas aeruginosa is ubiquitous, has intrinsic antibiotic resistance mechanisms, and is associated with serious hospital-associated infections. It has evolved from being a burn wound infection into a major nosocomial threat. In this study, we compared and correlated the antimicrobial resistance, virulence traits and clonal relatedness between clinical and fresh water environmental isolates of P. aeruginosa.

    Methods: 219 P. aeruginosa isolates were studied: (a) 105 clinical isolates from 1977 to 1985 (n = 52) and 2015 (n = 53), and (b) 114 environmental isolates from different fresh water sources. All isolates were subjected to ERIC-PCR typing, antimicrobial susceptibility testing and virulence factor genes screening.

    Results: Clinical and environmental isolates of P. aeruginosa were genetically heterogenous, with only four clinical isolates showing 100% identical ERIC-PCR patterns to seven environmental isolates. Most of the clinical and environmental isolates were sensitive to almost all of the antipseudomonal drugs, except for ticarcillin/clavulanic acid. Increased resistant isolates was seen in 2015 compared to that of the archived isolates; four MDR strains were detected and all were retrieved in 2015. All clinical isolates retrieved from 1977 to 1985 were susceptible to ceftazidime and ciprofloxacin; but in comparison, the clinical isolates recovered in 2015 exhibited 9.4% resistance to ceftazidime and 5.7% to ciprofloxacin; a rise in resistance to imipenem (3.8% to 7.5%), piperacillin (9.6% to 11.3%) and amikacin (1.9% to 5.7%) and a slight drop in resistance rates to piperacillin/tazobactam (7.7% to 7.5%), ticarcillin/clavulanic acid (19.2% to 18.9%), meropenem (15.4% to 7.5%), doripenem (11.5% to 7.5%), gentamicin (7.7% to 7.5%) and netilmicin (7.7% to 7.5%). Environmental isolates were resistant to piperacillin/tazobactam (1.8%), ciprofloxacin (1.8%), piperacillin (4.4%) and carbapenems (doripenem 11.4%, meropenem 8.8% and imipenem 2.6%). Both clinical and environmental isolates showed high prevalence of virulence factor genes, but none were detected in 10 (9.5%) clinical and 18 (15.8%) environmental isolates. The exoT gene was not detected in any of the clinical isolates. Resistance to carbapenems (meropenem, doripenem and imipenem), β-lactamase inhibitors (ticarcillin/clavulanic acid and piperacillin/tazobactam), piperacillin, ceftazidime and ciprofloxacin was observed in some of the isolates without virulence factor genes. Five virulence-negative isolates were susceptible to all of the antimicrobials. Only one MDR strain harbored none of the virulence factor genes.

    Conclusion: Over a period of 30 years, a rise in antipseudomonal drug resistance particularly to ceftazidime and ciprofloxacin was observed in two hospitals in Malaysia. The occurrence of resistant environmental isolates from densely populated areas is relevant and gives rise to collective anxiety to the community at large.

  10. Kamaruddin N, Daud F, Yusof A, Aziz ME, Rajion ZA
    PeerJ, 2019;7:e6319.
    PMID: 30697493 DOI: 10.7717/peerj.6319
    Background: Visualization and calculation of the airway dimensions are important because an increase of airway resistance may lead to life-threatening emergencies. The visualization and calculation of the airway are possible using radiography technique with their advance software. The aim of this study was to compare and to test the reliability of the measurement of the upper airway volume and minimum area using airway analysis function in two software.

    Methods: The sample consisted of 11 cone-beam computed tomography (CBCT) scans data, evaluated using the Invivo5 (Anatomage) and Romexis (version 3.8.2.R, Planmeca) software which afford image reconstruction, and airway analysis. The measurements were done twice with one week gap between the two measurements. The measurement obtained was analyzed with t-tests and intraclass correlation coefficient (ICC), with confidence intervals (CI) was set at 95%.

    Results: From the analysis, the mean reading of volume and minimum area is not significantly different between Invivo5 and Romexis. Excellent intrarater reliability values were found for the both measurement on both software, with ICC values ranging from 0.940 to 0.998.

    Discussion: The results suggested that both software can be used in further studies to investigate upper airway, thereby contributing to the diagnosis of upper airway obstructions.

  11. Jiruskova A, Motyka M, Bocek M, Bocak L
    PeerJ, 2019;7:e6511.
    PMID: 30863675 DOI: 10.7717/peerj.6511
    We investigated the spatial and temporal patterns of Cautires diversification on the Malay Peninsula and Sumatra to understand if the narrow and frequently dry Malacca Strait separates different faunas. Moreover, we analyzed the origin of Cautires in Malayan and Sumatran mountains. We sampled 18 localities and present the mtDNA-based phylogeny of 76 species represented by 388 individuals. The phylogenetic tree was dated using mtDNA evolution rates and the ancestral ranges were estimated using the maximum likelihood approach. The phylogeny identified multiple lineages on the Malay Peninsula since the Upper Eocene (35 million years ago, mya) and a delayed evolution of diversity in Sumatra since the Upper Oligocene (26 mya). A limited number of colonization events across the Malacca Strait was identified up to the Pliocene and more intensive faunal exchange since the Pleistocene. The early colonization events were commonly followed by in situ diversification. As a result, the Malacca Strait now separates two faunas with a high species-level turnover. The montane fauna diversified in a limited space and seldom took part in colonization events across the Strait. Besides isolation by open sea or a savannah corridor, mimetic patterns could decrease the colonization capacity of Cautires. The Malay fauna is phylogenetically more diverse and has a higher value if conservation priorities should be defined.
  12. Abdul Wahab P, Mohd Yusoff D, Abdul Kadir A, Ali SH, Lee YY, Kueh YC
    PeerJ, 2020;8:e8581.
    PMID: 32175185 DOI: 10.7717/peerj.8581
    Background: Chronic constipation is a common symptom among the elderly, and it may affect their quality of life (QoL). A lack of available research focused on the elderly means that this effect is not well understood. This study aimed to develop and validate a new scale (Elderly-Constipation Impact Scale (E-CIS)) to measure the impact of chronic constipation on QoL among the elderly.

    Methods: A pool of items was generated from a qualitative study, literature reviews, and expert reviews. Exploratory factor analysis (EFA) was performed on the original 40 items of the E-CIS and followed by 27 items for confirmatory factor analysis (CFA). A total of 470 elderly people with chronic constipation were involved.

    Results: The mean age of the participants was 68.64 ± 6.57. Finally, only 22 items were indicated as appropriately representing the E-CIS, which were grouped into seven subscales: 'daily activities', 'treatment satisfaction', 'lack of control of bodily function', 'diet restriction', 'symptom intensity', 'anxiety' and 'preventive actions'. The scale was confirmed as valid (root mean square error of approximation (RMSEA) = 0.04, comparative fit index (CFI) = 0.961, Tucker-Lewis index (TLI) = 0.952 and chi-square/degree of freedom (chiSq/df) = 1.44) and reliable (Cronbach's alpha: 0.66-0.85, composite reliability (CR) = 0.699-0.851) to assess the impact of chronic constipation on the elderly's QoL.

    Conclusions: The E-CIS is useful to measure the impact of chronic constipation on the elderly's QoL. A further test is needed to determine the validity and reliability of this scale in other elderly population.

  13. Kannan A, Rama Rao S, Ratnayeke S, Yow YY
    PeerJ, 2020;8:e8755.
    PMID: 32274263 DOI: 10.7717/peerj.8755
    Invasive apple snails, Pomacea canaliculata and P. maculata, have a widespread distribution globally and are regarded as devastating pests of agricultural wetlands. The two species are morphologically similar, which hinders species identification via morphological approaches and species-specific management efforts. Advances in molecular genetics may contribute effective diagnostic tools to potentially resolve morphological ambiguity. DNA barcoding has revolutionized the field of taxonomy by providing an alternative, simple approach for species discrimination, where short sections of DNA, the cytochrome c oxidase subunit I (COI) gene in particular, are used as 'barcodes' to delineate species boundaries. In our study, we aimed to assess the effectiveness of two mitochondrial markers, the COI and 16S ribosomal deoxyribonucleic acid (16S rDNA) markers for DNA barcoding of P. canaliculata and P. maculata. The COI and 16S rDNA sequences of 40 Pomacea specimens collected from six localities in Peninsular Malaysia were analyzed to assess their barcoding performance using phylogenetic methods and distance-based assessments. The results confirmed both markers were suitable for barcoding P. canaliculata and P. maculata. The phylogenies of the COI and 16S rDNA markers demonstrated species-specific monophyly and were largely congruent with the exception of one individual. The COI marker exhibited a larger barcoding gap (6.06-6.58%) than the 16S rDNA marker (1.54%); however, the magnitude of barcoding gap generated within the barcoding region of the 16S rDNA marker (12-fold) was bigger than the COI counterpart (approximately 9-fold). Both markers were generally successful in identifying P. canaliculata and P. maculata in the similarity-based DNA identifications. The COI + 16S rDNA concatenated dataset successfully recovered monophylies of P. canaliculata and P. maculata but concatenation did not improve individual datasets in distance-based analyses. Overall, although both markers were successful for the identification of apple snails, the COI molecular marker is a better barcoding marker and could be utilized in various population genetic studies of P. canaliculata and P. maculata.
  14. Aziz F, Malek S, Mhd Ali A, Wong MS, Mosleh M, Milow P
    PeerJ, 2020;8:e8286.
    PMID: 32206445 DOI: 10.7717/peerj.8286
    Background: This study assesses the feasibility of using machine learning methods such as Random Forests (RF), Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Self-Organizing Feature Maps (SOM) to identify and determine factors associated with hypertensive patients' adherence levels. Hypertension is the medical term for systolic and diastolic blood pressure higher than 140/90 mmHg. A conventional medication adherence scale was used to identify patients' adherence to their prescribed medication. Using machine learning applications to predict precise numeric adherence scores in hypertensive patients has not yet been reported in the literature.

    Methods: Data from 160 hypertensive patients from a tertiary hospital in Kuala Lumpur, Malaysia, were used in this study. Variables were ranked based on their significance to adherence levels using the RF variable importance method. The backward elimination method was then performed using RF to obtain the variables significantly associated with the patients' adherence levels. RF, SVR and ANN models were developed to predict adherence using the identified significant variables. Visualizations of the relationships between hypertensive patients' adherence levels and variables were generated using SOM.

    Result: Machine learning models constructed using the selected variables reported RMSE values of 1.42 for ANN, 1.53 for RF, and 1.55 for SVR. The accuracy of the dichotomised scores, calculated based on a percentage of correctly identified adherence values, was used as an additional model performance measure, resulting in accuracies of 65% (ANN), 78% (RF) and 79% (SVR), respectively. The Wilcoxon signed ranked test reported that there was no significant difference between the predictions of the machine learning models and the actual scores. The significant variables identified from the RF variable importance method were educational level, marital status, General Overuse, monthly income, and Specific Concern.

    Conclusion: This study suggests an effective alternative to conventional methods in identifying the key variables to understand hypertensive patients' adherence levels. This can be used as a tool to educate patients on the importance of medication in managing hypertension.

  15. Khan HU, Aamir K, Sisinthy SP, Nagojappa NBS, Arya A
    PeerJ, 2020;8:e8805.
    PMID: 32266118 DOI: 10.7717/peerj.8805
    Background: Lauric acid (LA), a common constituent of coconut oil, is used as food additives and supplements in various formulations. Despite various potential pharmacological properties, no scientific evidence on its dose-related toxicity and safety is available till date.

    Objective: The current study was conducted to evaluate acute oral toxicity of LA on normal rats.

    Methods: The study was conducted in accordance with the Organization for Economic Co-operation and Development guidelines (OECD 423) with slight modifications. LA was administered orally to female Sprague Dawley (SD) rats (n = 6/group) at a single dose of 300 and 2,000 mg/kg body weight, respectively, while normal control received vehicle only. Animals from all the three groups were monitored for any behavioural and toxicological changes and mortality for two weeks. Food and fluid consumption, body weight was monitored on daily basis. At the end (on day 15th) of the experimental period, blood was collected for haematological and biochemical analysis. Further, all the animals were euthanized, and internal organs were harvested for histopathological investigation using four different stainings; haematoxylin and eosin, Masson trichrome, Periodic Acid Schiff and Picro Sirius Red for gross pathology through microscopical observation.

    Results: The study results showed no LA treatment-related mortality and morbidity at two different dosages. Daily food and water consumption, body weight, relative organ weight, haematological, and biochemical analysis were observed to be normal with no severe alterations to the internal tissues.

    Conclusion: The current finding suggests that single oral administration of LA, even up to 2,000 mg/kg body weight, did not exhibit any signs of toxicity in SD rats; thus, it was safe to be used on disease models in animals.

  16. Mohtar NS, Abdul Rahman MB, Mustafa S, Mohamad Ali MS, Raja Abd Rahman RNZ
    PeerJ, 2019;7:e6880.
    PMID: 31183251 DOI: 10.7717/peerj.6880
    Sago starch is traditionally used as food especially in Southeast Asia. Generally, sago is safe for consumption, biodegradable, easily available and inexpensive. Therefore, this research was done to expand the potential of sago by using it as a support for enzyme immobilization. In this study, ARM lipase, which was isolated from Geobacillus sp. strain ARM, was overexpressed in Escherichia coli system and then purified using affinity chromatography. The specific activity of the pure enzyme was 650 U/mg, increased 7 folds from the cell lysate. The purified enzyme was immobilized in gelatinized sago and spray-dried by entrapment technique in order to enhance the enzyme operational stability for handling at high temperature and also for storage. The morphology of the gelatinized sago and immobilized enzyme was studied by scanning electron microscopy. The results showed that the spray-dried gelatinized sago was shrunken and became irregular in structure as compared to untreated sago powder. The surface areas and porosities of spray-dried gelatinized sago with and without the enzyme were analyzed using BET and BJH method and have shown an increase in surface area and decrease in pore size. The immobilized ARM lipase showed good performance at 60-80  °C, with a half-life of 4 h and in a pH range 6-9. The immobilized enzyme could be stored at 10 °C with the half-life for 9 months. Collectively, the spray-dried immobilized lipase shows promising capability for industrial uses, especially in food processing.
  17. Li G, Li P, Chen Q, Mani MP, Jaganathan SK
    PeerJ, 2019;7:e6986.
    PMID: 31179183 DOI: 10.7717/peerj.6986
    Traditionally, in the Asian continent, oils are a widely accepted choice for alleviating bone-related disorders. The design of scaffolds resembling the extracellular matrix (ECM) is of great significance in bone tissue engineering. In this study, a multicomponent polyurethane (PU), canola oil (CO) and neem oil (NO) scaffold was developed using the electrospinning technique. The fabricated nanofibers were subjected to various physicochemical and biological testing to validate its suitability for bone tissue engineering. Morphological analysis of the multicomponent scaffold showed a reduction in fiber diameter (PU/CO-853 ± 141.27 nm and PU/CO/NO-633 ± 137.54 nm) compared to PU (890 ± 116.911 nm). The existence of CO and NO in PU matrix was confirmed by an infrared spectrum (IR) with the formation of hydrogen bond. PU/CO displayed a mean contact angle of 108.7° ± 0.58 while the PU/CO/NO exhibited hydrophilic nature with an angle of 62.33° ± 2.52. The developed multicomponent also exhibited higher thermal stability and increased mechanical strength compared to the pristine PU. Atomic force microscopy (AFM) analysis depicted lower surface roughness for the nanocomposites (PU/CO-389 nm and PU/CO/NO-323 nm) than the pristine PU (576 nm). Blood compatibility investigation displayed the anticoagulant nature of the composites. Cytocompatibility studies revealed the non-toxic nature of the developed composites with human fibroblast cells (HDF) cells. The newly developed porous PU nanocomposite scaffold comprising CO and NO may serve as a potential candidate for bone tissue engineering.
  18. Anbarasen L, Lim J, Rajandram R, Mun KS, Sia SF
    PeerJ, 2019;7:e7058.
    PMID: 31275742 DOI: 10.7717/peerj.7058
    Background: Matrix metalloproteinase (MMP)-2 and -9 are Osteopontin (OPN) dependent molecules implicated in the destabilization of blood vessels. OPN and MMPs have been studied in brain arteriovenous malformation (BAVM) patients' tissues and blood samples before intervention. In this study, we compared the serum level of these markers before and after treatment, as well as assessed their protein expressions in BAVM tissues to evaluate their roles in this disease.

    Methodology: Serum samples from six BAVM patients and three control subjects were analyzed using enzyme-linked immunoabsorbent assay (ELISA) for OPN. A total of 10 BAVM patients and five control subjects were analyzed using Multiplex ELISA for MMPs. A total of 16 BAVM tissue samples and two normal brain tissue samples were analyzed using immunohistochemistry.

    Result: MMP-2 and -9 were significantly higher in the serum of BAVM patients before and after treatment than in control patients. There were no significant differences of OPN and MMP-9 serum level in BAVM patients before and after treatment. MMP-2 showed a significant elevation after the treatment. Expression of OPN, MMP-2 and -9 proteins were seen in endothelial cells, perivascular cells and brain parenchyma of BAVM tissues.

    Conclusion: Findings revealed that the level of MMP-2 and -9 in the serum correlated well with the expression in BAVM tissues in several cases. Knockdown studies will be required to determine the relationships and mechanisms of action of these markers in the near future. In addition, studies will be required to investigate the expression of these markers' potential applications as primary medical therapy targets for BAVM patients.

  19. Jiang B, Fu J, Dong Z, Fang M, Zhu W, Wang L
    PeerJ, 2019;7:e7007.
    PMID: 31179190 DOI: 10.7717/peerj.7007
    Background: Many tilapia species or varieties have been widely introduced and have become an economically important food fish in China. Information on the genetic backgrounds of these populations is deficient and requires more research, especially for red tilapia strains.

    Methods: In the present study, displacement loop (D-loop) sequences were used to evaluate the genetic relationship and diversity of seven tilapia populations that are widely cultured in China; this was done specifically to speculate on the maternal ancestry of red tilapia strains. Three red tilapia varieties of Oreochromis ssp., Taiwan (TW), Israel (IL), and Malaysia (MY) strains and other populations, including O. aureus (AR), O. niloticus (NL), O. mossambicus (MS), and the GIFT strain of O. niloticus, were collected and analyzed in this study.

    Results: A total of 146 polymorphic sites and 32 haplotypes of D-loop sequences were detected among 332 fish and four major haplotypes were shared among the populations. The TW and NL populations had a greater number of haplotypes (20 and 8, respectively). The haplotype diversity (Hd) and nucleotide diversity (π) of each population ranged from 0.234 to 0.826, and 0 to 0.060, respectively. The significant positive Tajima's D value of neutral test were detected in the NL, IL, and MY populations (P  0.05). The nearest K2P genetic distance (D = 0.014) was detected between the MS and TW populations, whereas, the farthest (D = 0.101) was found between the GIFT and AR populations. The results from the molecular variance analysis (AMOVA) showed that there was an extremely significant genetic variation observed among the populations (P 

  20. Ramzi AB, Che Me ML, Ruslan US, Baharum SN, Nor Muhammad NA
    PeerJ, 2019;7:e8065.
    PMID: 31879570 DOI: 10.7717/peerj.8065
    Background: G. boninense is a hemibiotrophic fungus that infects oil palms (Elaeis guineensis Jacq.) causing basal stem rot (BSR) disease and consequent massive economic losses to the oil palm industry. The pathogenicity of this white-rot fungus has been associated with cell wall degrading enzymes (CWDEs) released during saprophytic and necrotrophic stage of infection of the oil palm host. However, there is a lack of information available on the essentiality of CWDEs in wood-decaying process and pathogenesis of this oil palm pathogen especially at molecular and genome levels.

    Methods: In this study, comparative genome analysis was carried out using the G. boninense NJ3 genome to identify and characterize carbohydrate-active enzyme (CAZymes) including CWDE in the fungal genome. Augustus pipeline was employed for gene identification in G. boninense NJ3 and the produced protein sequences were analyzed via dbCAN pipeline and PhiBase 4.5 database annotation for CAZymes and plant-host interaction (PHI) gene analysis, respectively. Comparison of CAZymes from G. boninense NJ3 was made against G. lucidum, a well-studied model Ganoderma sp. and five selected pathogenic fungi for CAZymes characterization. Functional annotation of PHI genes was carried out using Web Gene Ontology Annotation Plot (WEGO) and was used for selecting candidate PHI genes related to cell wall degradation of G. boninense NJ3.

    Results: G. boninense was enriched with CAZymes and CWDEs in a similar fashion to G. lucidum that corroborate with the lignocellulolytic abilities of both closely-related fungal strains. The role of polysaccharide and cell wall degrading enzymes in the hemibiotrophic mode of infection of G. boninense was investigated by analyzing the fungal CAZymes with necrotrophic Armillaria solidipes, A. mellea, biotrophic Ustilago maydis, Melampsora larici-populina and hemibiotrophic Moniliophthora perniciosa. Profiles of the selected pathogenic fungi demonstrated that necrotizing pathogens including G. boninense NJ3 exhibited an extensive set of CAZymes as compared to the more CAZymes-limited biotrophic pathogens. Following PHI analysis, several candidate genes including polygalacturonase, endo β-1,3-xylanase, β-glucanase and laccase were identified as potential CWDEs that contribute to the plant host interaction and pathogenesis.

    Discussion: This study employed bioinformatics tools for providing a greater understanding of the biological mechanisms underlying the production of CAZymes in G. boninense NJ3. Identification and profiling of the fungal polysaccharide- and lignocellulosic-degrading enzymes would further facilitate in elucidating the infection mechanisms through the production of CWDEs by G. boninense. Identification of CAZymes and CWDE-related PHI genes in G. boninense would serve as the basis for functional studies of genes associated with the fungal virulence and pathogenicity using systems biology and genetic engineering approaches.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links