Displaying publications 161 - 180 of 525 in total

Abstract:
Sort:
  1. Umar AA, Salleh MM, Majlis BY, Oyama M
    J Nanosci Nanotechnol, 2011 Jun;11(6):4974-80.
    PMID: 21770130
    We found that the gold nanoparticles with high-density and crystalline-shape, such as nanocubes, nanobricks, pentahedral nanorods, etc., can be realized on the surface by using a seed-mediated growth method with a unique seeding process, namely alcohothermal. By using a conventional growth solution that contains HAuCl4, cetyltrimethylammonium bromide, NaOH and ascorbic acid, gold nanoparticles with crystalline-morphology (gold nanocrystals) of yield up to ca. 95%, can be prepared. An alcohothermal seeding was carried out by a thermal reduction of gold ions from an alcoholic solution of gold salt on the surface through an annealing process at a moderate temperature, namely 250 degrees C. It is believed that the unique initial characteristic (presumably the structures) of the gold nanoseeds particles as the result of peculiar nanoseeds formation process, prepared using this approach, instead of a simple thermal restructuring of the as prepared nanoseeds as confirmed by the results of annealing treatment on the nanoseed prepared using the normal and in-situ reduction seeding, was as the driving factor for the projected growth of crystalline-shape gold nanoparticles on the surface. The crystalline-shape gold nanoparticles modified-surface should find a potential application in catalysis, sensors and SERS.
    Matched MeSH terms: Catalysis
  2. Teh AA, Ahmad R, Kara M, Rusop M, Awang Z
    J Nanosci Nanotechnol, 2012 Oct;12(10):8201-4.
    PMID: 23421197
    We report the use of a new precursor as active agents to promote the growth of carbon nanotubes (CNT) in methane ambient using a simple thermal chemical vapour deposition method. The agents consist of ammonia and methanol mixed at different ratios and was found to enhance the growth of CNTs. The optimum methanol to ammonia ratio was found to be 8 to 5, whereby longer and denser CNTs were produced compared to other ratios. The result was found otherwise when the experiment was done solely in methane ambient. In addition, CNT growth on substrates coated with double layer Ni catalyst was improved in terms of quality and density compared to a single coated substrates. This finding is supported by Raman spectrometry analysis.
    Matched MeSH terms: Catalysis
  3. Khavarian M, Chai SP, Mohamed AR
    J Nanosci Nanotechnol, 2013 Jul;13(7):4825-37.
    PMID: 23901504
    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.
    Matched MeSH terms: Catalysis
  4. Ridha NJ, Umar AA, Alosfur F, Jumali MH, Salleh MM
    J Nanosci Nanotechnol, 2013 Apr;13(4):2667-74.
    PMID: 23763142
    Porous ZnO nanostructures have become the subject of research interest--due to their special structures with high surface to volume ratio that may produce peculiar properties for use in optoelectronics, sensing and catalysis applications. A microwave-assisted hydrothermal method has been used for effecting the formation of porous nanostructure of metaloxide materials, such as CoO and SnO2, in solution. Here, by adopting the unique performance of a microwave-assisted-hydrothermal method, we realized the formation of highly porous ZnO nanostructures directly on the substrate surface, instead of in solution. The effects of the ambient reaction conditions and the microwave power on the structural growth of the ZnO nanostructures were studied in detail. Two different ambient reaction conditions, namely refluxed and isolated in autoclave systems, were used in this work. Porous ZnO (PZO) nanostructures with networked-nanoflakes morphology is the typical result for this approach. It was found that the morphology of the ZnO nanostructures was strongly depended on the ambient conditions of the reaction; the isolated-autoclave system may produce reasonably high porous ZnO that is constituted by vertically oriented grainy-flakes structures, whereas the refluxed system produced solid vertically-oriented flake structures. The microwave power did not influence the structural growth of the ZnO. It was also found that both the ambient reaction conditions and the microwave power used influenced the crystallographic orientation of the PZO. For instance, PZO with dominant (002) Bragg plane could be obtained by using refluxed system, whereas PZO with dominant (101) plane could be realized if using isolated system. For the case of microwave power, the crystallographic orientation of PZO prepared using both systems changed from dominant (002) to (101) planes if the power was increased. The mechanism for the formation of porous ZnO nanostructures using the present approach is proposed. The ZnO nanostructures prepared using the present method should find an extensive use in currently existing application due to its property of reasonably high porosity.
    Matched MeSH terms: Catalysis
  5. Looi PY, Mohamed AR, Tye CT
    J Nanosci Nanotechnol, 2013 Oct;13(10):6988-95.
    PMID: 24245175
    In this study, performances of mesoporous Mo/Al2O3 catalysts prepared by sol-gel and post-hydrolysis methods in hydrocracking of atmospheric residual oil were compared. In addition, different methods: (i) the single step and (ii) conventional impregnation method to incorporate active metal over the mesoporous support were also investigated. For single step method, Mo/Al2O3 catalysts were synthesized directly by sol-gel and post-hydrolysis method. On the other hand, the impregnation method was a two step procedure which involved the production of alumina via sol-gel or post-hydrolysis method and followed by respective Mo impregnation. In general, mesoporous Mo/Al2O3 catalysts prepared by sol-gel method resulted in relatively higher surface area (> 400 m2/g) and large pore volume (- 0.8 cm3/g). Mo/Al2O3 catalysts prepared by sol-gel method exhibited higher hydrocracking activity as well. The Mo crystal size was found to relate directly with the hydrocracking result.
    Matched MeSH terms: Catalysis
  6. Abu Bakar NH, Abu Bakar M, Bettahar MM, Ismail J, Monteverdi S
    J Nanosci Nanotechnol, 2013 Jul;13(7):5034-43.
    PMID: 23901527
    A detailed study on the surface properties of oleic acid-stabilized PtNi nanoparticles supported on silica is reported. The oleic acid-stabilized PtNi nanoparticles were synthesized using NaBH4 as the reducing agent at various temperatures and oleic acid concentrations, prior to incorporation onto the silica support. X-ray diffraction studies of the unsupported oleic acid-stabilized PtNi particles revealed that the PtNi existed as alloys. Upon incorporation onto silica support, surface properties of the catalysts were investigated using H2-temperature reduction (H2-TPR), H2-temperature desorption (H2-TPD) and H2-chemisorption techniques. It was found that for the bimetallic catalysts, no oxides or very little oxidation occurred. Furthermore, these catalysts exhibited both Pt and Ni active sites on its surface though the availability of Ni active sites was dominant. A comparison of the surface properties of these materials with those prepared without oleic acid in our previous work [N. H. H. Abu Bakar et al., J. Catal. 265, 63 (2009)] and how they affect the hydrogenation of benzene is also discussed.
    Matched MeSH terms: Catalysis
  7. Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM
    J Mol Model, 2015 Mar;21(3):63.
    PMID: 25721655 DOI: 10.1007/s00894-015-2617-1
    Here, we present a novel psychrophilic β-glucanase from Glaciozyma antarctica PI12 yeast that has been structurally modeled and analyzed in detail. To our knowledge, this is the first attempt to model a psychrophilic laminarinase from yeast. Because of the low sequence identity (<40%), a threading method was applied to predict a 3D structure of the enzyme using the MODELLER9v12 program. The results of a comparative study using other mesophilic, thermophilic, and hyperthermophilic laminarinases indicated several amino acid substitutions on the surface of psychrophilic laminarinase that totally increased the flexibility of its structure for efficient catalytic reactions at low temperatures. Whereas several structural factors in the overall structure can explain the weak thermal stability, this research suggests that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through existence of longer loops and shorter or broken helices and strands, an increase in the number of aromatic and hydrophobic residues, a reduction in the number of hydrogen bonds and salt bridges, a higher total solvent accessible surface area, and an increase in the exposure of the hydrophobic side chains to the solvent. The results of comparative molecular dynamics simulation and principal component analysis confirmed the above strategies adopted by psychrophilic laminarinase to increase its catalytic efficiency and structural flexibility to be active at cold temperature.
    Matched MeSH terms: Catalysis
  8. Yotmanee P, Rungrotmongkol T, Wichapong K, Choi SB, Wahab HA, Kungwan N, et al.
    J Mol Graph Model, 2015 Jul;60:24-33.
    PMID: 26086900 DOI: 10.1016/j.jmgm.2015.05.008
    The pathogenic dengue virus (DV) is a growing global threat, particularly in South East Asia, for which there is no specific treatment available. The virus possesses a two-component (NS2B/NS3) serine protease that cleaves the viral precursor proteins. Here, we performed molecular dynamics simulations of the NS2B/NS3 protease complexes with six peptide substrates (capsid, intNS3, 2A/2B, 4B/5, 3/4A and 2B/3 containing the proteolytic site between P(1) and P(1)' subsites) of DV type 2 to compare the specificity of the protein-substrate binding recognition. Although all substrates were in the active conformation for cleavage reaction by NS2B/NS3 protease, their binding strength was somewhat different. The simulated results of intermolecular hydrogen bonds and decomposition energies suggested that among the ten substrate residues (P(5)-P(5)') the P(1) and P(2) subsites play a major role in the binding with the focused protease. The arginine residue at these two subsites was found to be specific preferential binding at the active site with a stabilization energy of intNS3>2A/2B>4B/5>3/4A>2B/3 in a relative correspondence with previous experimentally derived values.
    Matched MeSH terms: Catalysis
  9. Razali SA, Shamsir MS
    J Mol Graph Model, 2020 06;97:107548.
    PMID: 32023508 DOI: 10.1016/j.jmgm.2020.107548
    Xylitol is a high-value low-calorie sweetener used as sugar substitute in food and pharmaceutical industry. Xylitol phosphate dehydrogenase (XPDH) catalyses the conversion of d-xylulose 5-phosphate (XU5P) and d-ribulose 5-phosphate (RU5P) to xylitol and ribitol respectively in the presence of nicotinamide adenine dinucleotide hydride (NADH). Although these enzymes have been shown to produce xylitol and ribitol, there is an incomplete understanding of the mechanism of the catalytic events of these reactions and the detailed mechanism has yet to be elucidated. The main goal of this work is to analyse the conformational changes of XPDH-bound ligands such as zinc, NADH, XU5P, and RU5P to elucidate the key amino acids involved in the substrate binding. In silico modelling, comparative molecular dynamics simulations, interaction analysis and conformational study were carried out on three XPDH enzymes of the Medium-chain dehydrogenase (MDR) family in order to elucidate the atomistic details of conformational transition, especially on the open and closed state of XPDH. The analysis also revealed the possible mechanism of substrate specificity that are responsible in the catalyse hydride transfer are the residues His58 and Ser39 which would act as the proton donor for reduction of XU5P and RU5P respectively. The structural comparison and MD simulations displayed a significant difference in the conformational dynamics of the catalytic and coenzyme loops between Apo and XPDH-complexes and highlight the contribution of newly found triad residues. This study would assist future mutagenesis study and enzyme modification work to increase the catalysis efficiency of xylitol production in the industry.
    Matched MeSH terms: Catalysis
  10. Nyon MP, Rice DW, Berrisford JM, Hounslow AM, Moir AJ, Huang H, et al.
    J Mol Biol, 2009 Jan 9;385(1):226-35.
    PMID: 18983850 DOI: 10.1016/j.jmb.2008.10.050
    Cutinase belongs to a group of enzymes that catalyze the hydrolysis of esters and triglycerides. Structural studies on the enzyme from Fusarium solani have revealed the presence of a classic catalytic triad that has been implicated in the enzyme's mechanism. We have solved the crystal structure of Glomerella cingulata cutinase in the absence and in the presence of the inhibitors E600 (diethyl p-nitrophenyl phosphate) and PETFP (3-phenethylthio-1,1,1-trifluoropropan-2-one) to resolutions between 2.6 and 1.9 A. Analysis of these structures reveals that the catalytic triad (Ser136, Asp191, and His204) adopts an unusual configuration with the putative essential histidine His204 swung out of the active site into a position where it is unable to participate in catalysis, with the imidazole ring 11 A away from its expected position. Solution-state NMR experiments are consistent with the disrupted configuration of the triad observed crystallographically. H204N, a site-directed mutant, was shown to be catalytically inactive, confirming the importance of this residue in the enzyme mechanism. These findings suggest that, during its catalytic cycle, cutinase undergoes a significant conformational rearrangement converting the loop bearing the histidine from an inactive conformation, in which the histidine of the triad is solvent exposed, to an active conformation, in which the triad assumes a classic configuration.
    Matched MeSH terms: Catalysis/drug effects
  11. Sinduja B, Gowthaman NSK, John SA
    J Mater Chem B, 2020 10 28;8(41):9502-9511.
    PMID: 32996975 DOI: 10.1039/d0tb01681k
    In purine metabolism, the xanthine oxidoreductase enzyme converts hypoxanthine (HXN) to xanthine (XN) and XN to uric acid (UA). This leads to the deposition of UA crystals in several parts of the body and the serum UA level might be associated with various multifunctional disorders. The dietary intake of caffeine (CF) and ascorbic acid (AA) decreases the UA level in the serum, which leads to cellular damage. Hence, it is highly needed to monitor the UA level in the presence of AA, XN, HXN, and CF and vice versa. Considering this sequence of complications, the present paper reports the fabrication of an electrochemical sensor using low-cost N-doped carbon dots (CDs) for the selective and simultaneous determination of UA in the presence of AA, XN, HXN, and CF at the physiological pH. The colloidal solution of CDs was prepared by the pyrolysis of asparagine and fabricated on a GC electrode by cycling the potential from -0.20 to +1.2 V in a solution containing CDs and 0.01 M H2SO4. Here, the surface -NH2 functionalities of CDs were used to make a thin film of CDs on the GC electrode. FT-IR spectroscopy confirmed the involvement of the -NH2 group in the formation of the CD film. HR-TEM analysis depicts that the formed CDs showed spherical particles with a size of 1.67 nm and SEM analysis exhibits the 89 nm CD film on the GC electrode surface. The fabricated CD film was successfully used for the sensitive and selective determination of UA. The determination of UA was achieved selectively in a mixture consisting of AA, XN, HXN, and CF with 50-fold high concentration. The CDs-film fabricated electrode has several benefits over the bare electrode: (i) well-resolved oxidation peaks for five analytes, (ii) boosted sensitivity, (iii) shifted oxidation as well as on-set potentials toward less positive potentials, and (iv) high stability. The practical utility of the present sensor was tested by simultaneously determining the multifactorial disorders-causing agents in human fluids. The electrocatalyst developed in the present study is sustainable and can be used for multiple analyses; besides, the electrochemical method used for the fabrication of the CD film is environmentally benign.
    Matched MeSH terms: Catalysis
  12. Chaibakhsh N, Abdul Rahman MB, Abd-Aziz S, Basri M, Salleh AB, Abdul Rahman RN
    J Ind Microbiol Biotechnol, 2009 Sep;36(9):1149-55.
    PMID: 19479288 DOI: 10.1007/s10295-009-0596-x
    Immobilized Candida antarctica lipase-catalyzed esterification of adipic acid and oleyl alcohol was investigated in a solvent-free system (SFS). Optimum conditions for adipate ester synthesis in a stirred-tank reactor were determined by the response surface methodology (RSM) approach with respect to important reaction parameters including time, temperature, agitation speed, and amount of enzyme. A high conversion yield was achieved using low enzyme amounts of 2.5% w/w at 60 degrees C, reaction time of 438 min, and agitation speed of 500 rpm. The good correlation between predicted value (96.0%) and actual value (95.5%) implies that the model derived from RSM allows better understanding of the effect of important reaction parameters on the lipase-catalyzed synthesis of adipate ester in an organic solvent-free system. Higher volumetric productivity compared to a solvent-based system was also offered by SFS. The results demonstrate that the solvent-free system is efficient for enzymatic synthesis of adipate ester.
    Matched MeSH terms: Catalysis
  13. Pang YL, Abdullah AZ
    J Hazard Mater, 2012 Oct 15;235-236:326-35.
    PMID: 22939090 DOI: 10.1016/j.jhazmat.2012.08.008
    Fe-doped titanium dioxide (TiO(2)) nanotubes were prepared using sol-gel followed by hydrothermal methods and characterized using various methods. The sonocatalytic activity was evaluated based on oxidation of Rhodamine B under ultrasonic irradiation. Iron ions (Fe(3+)) might incorporate into the lattice and intercalated in the interlayer spaces of TiO(2) nanotubes. The catalysts showed narrower band gap energies, higher specific surface areas, more active surface oxygen vacancies and significantly improved sonocatalytic activity. The optimum Fe doping at Fe:Ti=0.005 showed the highest sonocatalytic activity and exceeded that of un-doped TiO(2) nanotubes by a factor of 2.3 times. It was believed that Fe(3+) doping induced the formation of new states close to the valence band and conduction bands and accelerated the separation of charge carriers. Leached Fe(3+) could catalyze Fenton-like reaction and led to an increase in the hydroxyl radical (OH) generation. Fe-doped TiO(2) nanotubes could retain high degradation efficiency even after being reused for 4 cycles with minimal loss of Fe from the surface of the catalyst.
    Matched MeSH terms: Catalysis
  14. Idris A, Misran E, Hassan N, Abd Jalil A, Seng CE
    J Hazard Mater, 2012 Aug 15;227-228:309-16.
    PMID: 22682796 DOI: 10.1016/j.jhazmat.2012.05.065
    In this study magnetic separable photocatalyst beads containing maghemite nanoparticles (γ-Fe(2)O(3)) in polyvinyl alcohol (PVA) polymer were prepared and used in the reduction of Cr(VI) to Cr(III) in an aqueous solution under sunlight. The unique superparamagnetic property of the photocatalyst contributed by the γ-Fe(2)O(3) and robust property of PVA polymer allow the magnetic beads to be recovered easily and reused for at least 7 times without washing. The concentration of γ-Fe(2)O(3) was varied from 8% (v/v) to 27% (v/v) and the results revealed that the beads with 8% (v/v) γ-Fe(2)O(3) exhibited the best performance where Cr(VI) was reduced to Cr(III) in only 30 min under sunlight. The use of the PVA has improved the bead properties and life cycle of beads which is in line with sustainable practices.
    Matched MeSH terms: Catalysis
  15. Alwash AH, Abdullah AZ, Ismail N
    J Hazard Mater, 2012 Sep 30;233-234:184-93.
    PMID: 22831996 DOI: 10.1016/j.jhazmat.2012.07.021
    A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.
    Matched MeSH terms: Catalysis
  16. Abd Aziz A, Yong KS, Ibrahim S, Pichiah S
    J Hazard Mater, 2012 Jan 15;199-200:143-50.
    PMID: 22100220 DOI: 10.1016/j.jhazmat.2011.10.069
    An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19). The supported N-TiO(2) exhibited a strong ferromagnetic property with tremendous stability against magnetic property losses. It also resulted in reduced band gap (2.8 eV) and better visible light absorption between 400 and 800 nm compared to N-doped TiO(2). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffuse sunlight exposure. A complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for both photocatalysts in 180 min and 270 min respectively under bright sunlight. Similarly the diffuse sunlight study resulted in complete degradation for supported N-TiO(2) and >85% degradation N-TiO(2), respectively. Finally the supported photocatalyst was separated under permanent magnetic field with a mass recovery ≈ 98% for further reuse.
    Matched MeSH terms: Catalysis
  17. Sumathi S, Bhatia S, Lee KT, Mohamed AR
    J Hazard Mater, 2010 Apr 15;176(1-3):1093-6.
    PMID: 20018447 DOI: 10.1016/j.jhazmat.2009.11.037
    This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2).
    Matched MeSH terms: Catalysis
  18. Jalil AA, Triwahyono S, Razali NA, Hairom NH, Idris A, Muhid MN, et al.
    J Hazard Mater, 2010 Feb 15;174(1-3):581-5.
    PMID: 19864065 DOI: 10.1016/j.jhazmat.2009.09.091
    Electrochemical dechlorination of chlorobenzenes in the presence of various arene mediators such as naphthalene, biphenyl, phenanthrene, anthracene, and pyrene, was studied. The amount of mediator required was able to be reduced to 0.01 equiv. for all mediators except for anthracene, with the complete dechlorination of mono-, 1,3-di- and 1,2,4-trichlorobenzene still achieved. This catalytic amount of mediator plays an important role in accelerating the dechlorination through the rapid formation of radical anions prior to reduction of the chlorobenzenes.
    Matched MeSH terms: Catalysis
  19. Zainudin NF, Abdullah AZ, Mohamed AR
    J Hazard Mater, 2010 Feb 15;174(1-3):299-306.
    PMID: 19818556 DOI: 10.1016/j.jhazmat.2009.09.051
    Photocatalytic degradation of phenol was investigated using the supported nano-TiO(2)/ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO(2) as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO(2):ZSM-5:silica gel:colloidal silica gel=1:0.6:0.6:1) which giving about 90% degradation of 50mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m(2)/g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.
    Matched MeSH terms: Catalysis
  20. Saepurahman, Abdullah MA, Chong FK
    J Hazard Mater, 2010 Apr 15;176(1-3):451-8.
    PMID: 19969415 DOI: 10.1016/j.jhazmat.2009.11.050
    Tungsten-loaded TiO(2) photocatalyst has been successfully prepared and characterized. TEM analysis showed that the photocatalysts were nanosize with the tungsten species forming layers of coverage on the surface of TiO(2), but not in clustered form. This was confirmed by XRD and FT-Raman analyses where tungsten species were well dispersed at lower loading (<6.5 mol%), but were in crystalline WO(3) at higher loadings (>12 mol%). In addition, loading with tungsten could stabilize the anatase phase from transforming into inactive rutile phase and did not shift the optical absorption to the visible region as shown by DRUV-vis analysis. PZC value of TiO(2) was found at 6.4, but the presence of tungsten at 6.5 mol% WO(3), decreased the PZC value to 3. Tungsten-loaded TiO(2) was superior to unmodified TiO(2) with 2-fold increase in degradation rate of methylene blue, and equally effective for the degradation of different class of dyes such as methyl violet and methyl orange at 1 mol% WO(3) loading.
    Matched MeSH terms: Catalysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links