3D-printing or additive manufacturing is presently an emerging technology in the fourth industrial revolution that promises to reshape traditional manufacturing processes. The electrochemistry field can undoubtedly take advantage of this technology to fabricate electrodes to create a new generation of electrode sensor devices that could replace conventionally manufactured electrodes; glassy carbon, screen-printed carbon and carbon composite electrodes. In the electrochemistry research area, studies to date show that there is a demand for electrically 3D printable conductive polymer/carbon nanomaterial filaments where these materials can be printed out through an extrusion process based upon the fused deposition modelling (FDM) method. FDM could be used to manufacture novel electrochemical 3D printed electrode sensing devices for electrochemical sensor and biosensor applications. This is due to the FDM method being the most affordable 3D printing technique since conductive and non-conductive thermoplastic filaments are commercially available. Therefore, in this minireview, we focus on only the most outstanding studies that have been published since 2018. We believe this to be a highly-valuable research area to the scientific community, both in academia and industry, to enable novel ideas, materials, designs and methods relating to electroanalytical sensing devices to be generated. This approach has the potential to create a new generation of electrochemical sensing devices based upon additive manufacturing. This minireview also provides insight into how the research community could improve the electrochemical performance of 3D-printed electrodes to significantly increase the sensitivity of the 3D-printed electrodes as electrode sensing devices.
Underwater Wireless Sensor Networks (UWSNs) have recently established themselves as an extremely interesting area of research thanks to the mysterious qualities of the ocean. The UWSN consists of sensor nodes and vehicles working to collect data and complete tasks. The battery capacity of sensor nodes is quite limited, which means that the UWSN network needs to be as efficient as it can possibly be. It is difficult to connect with or update a communication that is taking place underwater due to the high latency in propagation, the dynamic nature of the network, and the likelihood of introducing errors. This makes it difficult to communicate with or update a communication. Cluster-based underwater wireless sensor networks (CB-UWSNs) are proposed in this article. These networks would be deployed via Superframe and Telnet applications. In addition, routing protocols, such as Ad hoc On-demand Distance Vector (AODV), Fisheye State Routing (FSR), Location-Aided Routing 1 (LAR1), Optimized Link State Routing Protocol (OLSR), and Source Tree Adaptive Routing-Least Overhead Routing Approach (STAR-LORA), were evaluated based on the criteria of their energy consumption in a range of various modes of operation with QualNet Simulator using Telnet and Superframe applications. STAR-LORA surpasses the AODV, LAR1, OLSR, and FSR routing protocols in the evaluation report's simulations, with a Receive Energy of 0.1 mWh in a Telnet deployment and 0.021 mWh in a Superframe deployment. The Telnet and Superframe deployments consume 0.05 mWh transmit power, but the Superframe deployment only needs 0.009 mWh. As a result, the simulation results show that the STAR-LORA routing protocol outperforms the alternatives.