Access to our buildings relies to the accessibility of its external environment and the route taken. Developments and planning in urban areas has many several requirements and restrictions. Planning accessibility for Malaysian built environment is achievable by designing in compliance to the requirements enforced by authorities. Accessible design is commonly associated with providing facilities for Persons with Disabilities (PwDs), the issue that is often brought up is the inaccessibility of the external environment and lacking of seamless connectivity between buildings and the outdoor. The intention is to formulate accessibility strategies and work out planning process on how accessibility can be achieved. Universal Design will be the basis for the design and planning concept to accommodate all users to enjoy our urban built environment. It is notable that developed countries advances more in terms of implementing and enforcing accessibility measures via legislative and regulatory documents, government strategies and initiatives within its planning approach than the developing nations. The methodology will be looking into the establishment of strategies and measures of international and local planning policy, local and action plans of City of London as selected Local Authority to be analyzed its inclusive policy has been successfully implemented in their jurisdiction. The findings, discussions and result will be an outcome of generating a framework of accessibility strategies that is derived from interviews and government documents accordingly to targeted Malaysian urban areas focusing the City of Petaling Jaya and Putrajaya and how it can be improvised. Therefore, an interpretation of adopting accessibility planning strategies of developed country, to be adapted locally according to Malaysian legislation, culture and lifestyles.
Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl₂ and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO₂ into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO₂ loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm² (with V vs. Ag/AgCl) under UV illumination and 14.75 mA/cm² (with V vs. Ag/AgCl) under solar illumination with photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance was approximately 3-4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO₂-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination.
In this present work, we report the deposition of cadmium selenide (CdSe) particles on titanium dioxide (TiO2) nanotube thin films, using the chemical bath deposition (CBD) method at low deposition temperatures ranging from 20 to 60 °C. The deposition temperature had an influence on the overall CdSe-TiO2 nanotube thin film morphologies, chemical composition, phase transition, and optical properties, which, in turn, influenced the photoelectrochemical performance of the samples that were investigated. All samples showed the presence of CdSe particles in the TiO2 nanotube thin film lattice structures with the cubic phase CdSe compound. The amount of CdSe loading on the TiO2 nanotube thin films were increased and tended to form agglomerates as a function of deposition temperature. Interestingly, a significant enhancement in photocurrent density was observed for the CdSe-TiO2 nanotube thin films deposited at 20 °C with a photocurrent density of 1.70 mA cm-2, which was 17% higher than the bare TiO2 nanotube thin films. This sample showed a clear surface morphology without any clogged nanotubes, leading to better ion diffusion, and, thus, an enhanced photocurrent density. Despite having the least CdSe loading on the TiO2 nanotube thin films, the CdSe-TiO2 nanotube thin films deposited at 20 °C showed the highest photocurrent density, which confirmed that a small amount of CdSe is enough to enhance the photoelectrochemical performance of the sample.