Displaying all 2 publications

Abstract:
Sort:
  1. Dewika M, Markandan K, Nagaratnam S, Irfan NA, Abdah MAAM, Ruwaida JN, et al.
    Sci Total Environ, 2025 Jan 10;959:178049.
    PMID: 39729847 DOI: 10.1016/j.scitotenv.2024.178049
    This study examines the concentration, distribution, and characteristics of suspended microplastics (MPs) across various indoor environments in Malaysia, including offices, classrooms, landed homes, and apartments. Over a six-week period, MPs were collected using a vacuum pump and analyzed through gravimetric analysis, stereomicroscopy, and Raman spectroscopy. The results revealed significant variability in MPs concentrations among different locations, with fibers identified as the predominant morphological type. The average counts of MPs in the respective environments were found to be 599 ± 182 in offices, 399 ± 52 in classrooms, 505.17 ± 203.78 in apartments, and 515 ± 134 in landed homes. Statistical analysis indicated no significant differences in MPs counts across the sampled locations. Fibers were consistently the most prevalent shape, followed by films and foams. The MPs were predominantly transparent, with sizes ranging from 101 to 500 μm. Notably, the estimated daily intake (EDI) of MPs was significantly higher in residential settings compared to offices and classrooms, raising potential health concerns regarding prolonged exposure. These findings underscore the pervasive presence of MPs in the Malaysian indoor environment and emphasize the urgent need for further research to identify their sources, assess health impacts, and develop effective mitigation strategies.
  2. Rozaini MNH, Khoo KS, Abdah MAAM, Ethiraj B, Alam MM, Anwar AF, et al.
    Environ Geochem Health, 2024 Mar 11;46(3):111.
    PMID: 38466501 DOI: 10.1007/s10653-024-01917-4
    With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links