Displaying all 2 publications

Abstract:
Sort:
  1. Leong WH, Lim JW, Rawindran H, Liew CS, Lam MK, Ho YC, et al.
    Chemosphere, 2023 Nov;341:139953.
    PMID: 37634592 DOI: 10.1016/j.chemosphere.2023.139953
    Life cycle assessments of microalgal cultivation systems are often conducted to evaluate the sustainability and feasibility factors of the entire production chain. Unlike widely reported conventional microalgal cultivation systems, the present work adopted a microalgal-bacterial cultivation approach which was upscaled into a pilot-scale continuous photobioreactor for microalgal biomass production into biodiesel from wastewater resources. A multiple cradle-to-cradle system ranging from microalgal biomass-to-lipid-to-biodiesel was evaluated to provide insights into the energy demand of each processes making up the microalgae-to-biodiesel value chain system. Energy feasibility studies revealed positive NER values (4.95-8.38) for producing microalgal biomass but deficit values for microalgal-to-biodiesel (0.14-0.23), stemming from the high energy input requirements in the downstream processes for converting biomass into lipid and biodiesel accounting to 88-90% of the cumulative energy demand. Although the energy balance for microalgae-to-biodiesel is in the deficits, it is comparable with other reported biodiesel production case studies (0.12-0.40). Nevertheless, the approach to using microalgal-bacterial cultivation system has improved the overall energy efficiency especially in the upstream processes compared to conventional microalgal cultivation systems. Energy life cycle assessments with other microalgal based biofuel systems also proposed effective measures in increasing the energy feasibility either by utilizing the residual biomass and less energy demanding downstream extraction processes from microalgal biomass. The microalgal-bacterial cultivation system is anticipated to offer both environmental and economic prospects for upscaling by effectively exploiting the low-cost nutrients from wastewaters via bioconversion into valuable microalgal biomass and biodiesel.
  2. Rawindran H, Khoo KS, Ethiraj B, Suparmaniam U, Leong WH, Raksasat R, et al.
    Environ Res, 2023 Sep 15;233:116533.
    PMID: 37394167 DOI: 10.1016/j.envres.2023.116533
    Changing the growth environment for microalgae can overall lead to the fundamental alteration in cellular biochemicals whilst attaching onto palm kernel expeller (PKE) waste to form adhesion complex in easing harvesting at stationary growth phase. This study had initially optimized the PKE dosage, light intensity and photoperiod in maximizing the attached microalgal productivity being attained at 0.72 g/g day. Lipid content increased progressively from pH 3 to pH 11, with the highest value observed at pH 11. Meanwhile, in terms of protein and carbohydrate contents, the highest values were obtained by cultivation medium of pH 5 with 9.92 g and 17.72 g, respectively followed by pH 7 with 9.16 g and 16.36 g, respectively. Moreover, the findings also suggested that the low pH mediums utilized polar interactions in the formation of complexes between PKE and microalgae, whereas at higher pH levels, the non-polar interactions became more significant. The work of attachment was thermodynamically favourable towards the attachment formation with values greater than zero which was also aligned with the microscopic surface topography, i.e., revealing a clustering pattern of microalgae colonizing the PKE surface. These findings contribute to comprehensive understanding of optimizing growth condition and harvesting strategy of attached microalgae in attaining the cellular biochemical components, facilitating the development of efficient and sustainable bioresource utilization.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links