Displaying all 2 publications

Abstract:
Sort:
  1. Ahmad Shariff SH, Wan Abdul Khodir WK, Abd Hamid S, Haris MS, Ismail MW
    Polymers (Basel), 2022 Nov 10;14(22).
    PMID: 36432974 DOI: 10.3390/polym14224847
    Recently, drug delivery systems based on nanoparticles for cancer treatment have become the centre of attention for researchers to design and fabricate drug carriers for anti-cancer drugs due to the lack of tumour-targeting activity in conventional pharmaceuticals. Poly(caprolactone)-b-poly(ethylene glycol) (PCL-PEG)-based micelles have attracted significant attention as a potential drug carrier intended for human use. Since their first discovery, the Food and Drug Administration (FDA)-approved polymers have been studied extensively for various biomedical applications, specifically cancer therapy. The application of PCL-PEG micelles in different cancer therapies has been recorded in countless research studies for their efficacy as drug cargos. However, systematic studies on the effectiveness of PCL-PEG micelles of specific cancers for pharmaceutical applications are still lacking. As breast cancer is reported as the most prevalent cancer worldwide, we aim to systematically review all available literature that has published research findings on the PCL-PEG-based micelles as drug cargo for therapy. We further discussed the preparation method and the anti-tumour efficacy of the micelles. Using a prearranged search string, Scopus and Science Direct were selected as the databases for the systematic searching strategy. Only eight of the 314 articles met the inclusion requirements and were used for data synthesis. From the review, all studies reported the efficiency of PCL-PEG-based micelles, which act as drug cargo for breast cancer therapy.
  2. Guarino V, Cruz Maya I, Altobelli R, Abdul Khodir WK, Ambrosio L, Alvarez Pèrez MA, et al.
    Nanotechnology, 2017 Oct 23.
    PMID: 29058684 DOI: 10.1088/1361-6528/aa9542
    Main limitation of conventional antibiotic therapies concerns the low efficacy to bacteria attacks for long treatment times. In this context, the integrated use of electrofluidodynamics (EFDs) - basically electrospinning and electrospraying - may represent an interesting route to design nanostructured platforms with controlled release to prevent the formation of bacterial biofilms in oral implant sites. They allow for the deposition of nanofibres and nanoparticles by different modes - i.e., sequential, simultaneous - for the fabrication of more efficacious systems in terms of degradation protection, pharmacokinetic control and drug distribution to the surrounding tissues. Herein, we will investigate EFDs processing modes and conditions to decorate polycaprolactone (PCL) nanofibres surfaces by chitosan (CS) nano-reservoirs for the administration of Amoxicillin Trihydrate (AMX-DHT) as innovative antibacterial treatment of the periodontal pocket.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links