Displaying all 5 publications

Abstract:
Sort:
  1. Vijayasree VP, Abdul Manan NS
    Int J Biol Macromol, 2023 Jul 01;242(Pt 1):124723.
    PMID: 37148927 DOI: 10.1016/j.ijbiomac.2023.124723
    In this study, magnetite carboxymethylcellulose (CMC@Fe3O4) composite as magnetic biological molecules were synthetized for the use as adsorbent to remove four types of cationic dyes, namely Methylene Blue, Rhodamine B, Malachite Green, and Methyl Violet from aqueous solution. The characteristic of the adsorbent was achieved by Fourier Transform Infrared Spectroscopy, Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction, Vibrating Sample Magnetometer and Thermal Gravimetric Analysis techniques. Besides, essential influencing parameters of dye adsorption; the solution pH, solution temperature, contact time, adsorbent concentration and initial dye dosage were studied. FESEM analysis showed the magnetic Fe3O4-TB, Fe3O4@SiO2, Fe3O4@SiO2-NH2 and CMC@Fe3O4 composites were in spherical shape, with average size of 43.0 nm, 92.5 nm, 134.0 nm and 207.5 nm, respectively. On the saturation magnetization (Ms), the results obtained were 55.931 emu/g, 34.557 emu/g, 33.236 emu/g and 11.884 emu/g. From the sorption modelling of Isotherms, Kinetics, and Thermodynamics, the adsorption capacity of dyes is (MB = 103.33 mg/g), (RB = 109.60 mg/g), (MG = 100.08 mg/g) and (MV = 107.78 mg/g). With all the adsorption processes exhibited as exothermic reactions. The regeneration and reusability of the synthetized biological molecules-based adsorbent was also assessed.
  2. Mohamad S, Bakhshaei S, Abdul Manan NS, Parmin NA, Mahmad Rozi SK
    J Nanosci Nanotechnol, 2021 11 01;21(11):5522-5534.
    PMID: 33980362 DOI: 10.1166/jnn.2021.19454
    A newly synthesized free fatty acids from waste palm oil functionalized magnetic nanoparticles immobilized on the surface of graphene oxide (FFA@MNP-GO) was successfully synthesized and characterized in this research. The combinations of long alkyl chain of free fatty acid with graphene oxide that consists of large delocalized 77-electron systems and abundant of hydrophilic groups with hydroxyl, epoxide and carboxylic groups offer the determination of simultaneous wide range of polarities of organic pollutants in real matrices through hydrogen bonding, hydrophobic and 77-77 interactions. The fabricated adsorbent was successfully applied as a magnetic solid phase extraction (MSPE) adsorbent for the simultaneous separation of selected phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in apple and cabbage extracts prior to their high performance liquid chromatography with diode-array detector (HPLC-DAD) determination. Factors affecting the extraction efficiency such as amount of adsorbent, desorption solvent, volume of desorption solvent, extraction time, desorption time, pH and sample volume were investigated and optimized. The results revealed that under optimal conditions, the detection limit of selected PAEs and PAHs were in the range of 0.56-0.97 ng mL-1 and 0.02-0.93 ng mL-1, respectively. The spiked recoveries of real apple and cabbage extracts for PAEs and PAHs were in the range of 81.5-117.6% with good relative standard deviation (RSD) (n = 5) less than 10% and 86.7-118.2% with acceptable RSDs (n = 5) ranging from 1.5 to 11.0%, respectively. This study reported for the first time the use of MSPE procedure for simultaneous determination of chosen PAHs and PAEs in real samples including apple and cabbage extracts by using new adsorbent, FFA@MNP-GO.
  3. Ishak MAI, Aun TT, Sidek N, Mohamad S, Jumbri K, Abdul Manan NS
    J Comput Chem, 2024 Feb 19.
    PMID: 38372509 DOI: 10.1002/jcc.27321
    In this study, the enantioselectivity of β-cyclodextrin and its derivatives towards propranolol enantiomers are investigated by molecular dynamic (MD) simulations. β-cyclodextrin (β-CD) have previously been shown to be able to recognize propranolol (PRP) enantiomers. To improve upon the enantioselectivity of β-cyclodextrin, we propose the use of an ionic-liquid-modified-β-cyclodextrin (β-CD-IL). β-CD-IL was found to be able to complex R and S propranolol enantiomers with differing binding energies. The molecular docking study reveals that the ionic liquid chain attached to the β-CD molecule has significant interaction with propranolol. The formation of the most stable complex occurred between (S)-β-CD-IL and (S)-propranolol with an energy of -5.80 kcal/mol. This is attributed to the formation of a hydrogen bond between the oxygen of the propranolol and the hydrogen on the primary rim of the (S)-β-CD-IL cavity. This interaction is not detected in other complexes. The root mean-squared fluctuation (RMSF) value indicates that the NH group is the most flexible molecular fragment, followed by the aromatic group. Also of note, the formation of a complex between pristine β-CD and (S)-propranolol is the least favorable.
  4. Rosli AN, Abu Bakar MA, Lee VS, Zain SM, Ahmad MR, Abdul Manan NS, et al.
    J Mol Model, 2014 Sep;20(9):2428.
    PMID: 25149440 DOI: 10.1007/s00894-014-2428-9
    In this work, hybrid functional and G4 methods were employed in the rational design of carbonitrile-carboxaldehyde receptor models for cation recognition. Electron-sharing and ionic interactions between the models and the cations were analyzed utilizing the concepts of overlap population, atomic valence, electrostatic potential, and CHELPG charge in order to elucidate the nature of the heteroatom-metal interaction, the N versus O disparity, and the effect of pH. Receptor fragment models from ionomycin were employed to rationalize the selection of receptor models for discriminating group I cations and enhancing the selectivity for Mg(II) rather than Ca(II), and to examine the effects of keto-enol forms and negatively charged sites. The changes in geometries, overlap population, metal valence, and CHELPG charge upon solvation in heptane medium as compared to the gas phase were negligible. The optimized geometries reveal that the interaction between group II cations and the keto, enol, and enolate forms of 2-cyanoethanal causes 12 % bending of the C-C-N angle from linearity. Overlap populations show that the electron-sharing interaction favors group II cations but that the same mechanism allows Li(I) to compete. The total spin of Li(I) is 17 % greater than that of Ca(II), but the G4 binding energies of the two are separated by more than 50 kcal/mol, favoring group II cations, which may eliminate interference from Li(I). 1,2-Dicyanoethylene, which has only one form, shows similar characteristics. CHELPG analysis shows that Mg(II) transfers 25 and 18 % of its positive charge to 2-cyanoethanal enolate and 1,2-dicyanoethylene, respectively. Hydrogen atoms receive most of the positive charge in both receptors, but the N-termini exhibit strikingly different characteristics. Electrostatic potential contour profiles were found to be in good agreement with the atomic charge distributions. The application of uncharged 1,3-dicarbonyl and 2-cyanocarbonyl receptors and a judicious choice of polymeric membrane that suppresses the Hofmeister effect should lead to high selectivity for magnesium, whereas the utilization of multiple negatively charged ionophores should result in selectivity for calcium.
  5. Ahmad A, Zulaily N, Abdul Manan NS, Shahril MR, Syed Saadun Tarek Wafa SW, Mohd Amin R, et al.
    BMC Public Health, 2017 01 05;17(1):9.
    PMID: 28056904 DOI: 10.1186/s12889-016-3911-2
    BACKGROUND: Body weight is highly associated with overall health status. Being severely thin or obese may impose the risk of many health problems. Early detection of body mass index (BMI) status may help to reduce the associated comorbidities. Although many studies in the literature have investigated the BMI of school adolescents in Malaysia, the data on status of body weight among school adolescents in suburban states like Terengganu is limited. This study aimed to describe the body weight status of the whole population of school adolescents in all seven districts in Terengganu, Malaysia.

    METHODS: Using a cross-sectional study design, body weight and height were measured, and BMI was calculated and classified using WHO BMI-for-age Z-score. Data was obtained using the National Fitness Standard (SEGAK) assessment, which was uploaded in a specific Health Monitoring System (HEMS).

    RESULTS: From a total of 62,567 school adolescents, 50.7% were boys and 49.3% were girls. Girls had significantly higher BMI than boys in age groups of 13 to 15 and 16 to 17 years old. Among boys and girls, there were significant differences in mean BMI of school adolescents between rural and urban school locations in all age groups (p 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links