Displaying all 2 publications

Abstract:
Sort:
  1. Sabri MZ, Abdul Hamid AA, Sayed Hitam SM, Abdul Rahim MZ
    Adv Bioinformatics, 2019;2019:6912914.
    PMID: 31346332 DOI: 10.1155/2019/6912914
    Aptamer has been long studied as a substitute of antibodies for many purposes. However, due to the exceeded length of the aptamers obtained in vitro, difficulties arise in its manipulation during its molecular conjugation on the matrix surfaces. Current study focuses on computational improvement for aptamers screening of hepatitis B surface antigen (HBsAg) through optimization of the length sequences obtained from SELEX. Three original aptamers with affinity against HBsAg were truncated into five short hairpin structured aptamers and their affinity against HBsAg was thoroughly studied by molecular docking, molecular dynamics (MD) simulation, and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) method. The result shows that truncated aptamers binding on HBsAg "a" determinant region are stabilized by the dynamic H-bond formation between the active binding residues and nucleotides. Amino acids residues with the highest hydrogen bonds hydrogen bond interactions with all five aptamers were determined as the active binding residues and further characterized. The computational prediction of complexes binding will include validations through experimental assays in future studies. Current study will improve the current in vitro aptamers by minimizing the aptamer length for its easy manipulation.
  2. Hamim NA, Saari N, Wan Ibadullah WZ, Mohamed AMD, Anwar F, Hasan MY, et al.
    J Sci Food Agric, 2025 Feb;105(3):2032-2047.
    PMID: 39470133 DOI: 10.1002/jsfa.13979
    BACKGROUND: Kenaf seeds are a rich source of protein; however, finding the best extraction method is crucial to obtaining high-quality protein from these underutilized seeds. This research devised an optimized extraction process for best recovery of kenaf seeds protein using response surface methodology. The key parameters affecting the yield and protein content were optimized, including extraction pH (2-11), seed:water ratio (5:1-50:1), temperature (30-90 °C), and duration (20-360 min). The physicochemical and techno-functional properties of kenaf seed protein isolates (KSPIs) were examined.

    RESULTS: A maximum protein yield of 12.05 g/100 g with purity level 91.94 g/100 g was obtained using an optimized extraction with pH 11.0, seed:water ratio 50:1, 360 min duration, and temperature 50 °C. The oil and water retention capacities of KSPI were 1.14 mL g-1 and 1.37 mL g-1 respectively. After 30 min at pH 7, KSPIs demonstrated remarkable emulsion capacity (83.12%) and stability (75.63%), along with high foaming capacity (106%) and stability (18.3%). As per high-performance liquid chromatography analysis, arginine, glutamic acid, leucine, phenylalanine, and lysine were the most abundant amino acids detected in KPSIs. The KSPIs' globular protein structure was successfully verified using analytical approaches, including Fourier transform infrared spectroscopy, protein fraction ratios, and differential scanning calorimetry. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed that KPSI has a molecular weight distribution ranging from 10 kDa to 50 kDa.

    CONCLUSION: The results of this study support the application of the proposed response-surface-methodology-optimized extraction method for efficient recovery of high-quality kenaf seed proteins that meet the necessary physicochemical and techno-functional requirements. © 2024 Society of Chemical Industry.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links