Displaying all 5 publications

Abstract:
Sort:
  1. Abdulhameed A, Halim MM, Halin IA
    Nanotechnology, 2023 Mar 31;34(24).
    PMID: 36921341 DOI: 10.1088/1361-6528/acc46c
    Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
  2. Abdulhameed A, Mohtar MN, Hamidon MN, Halin IA
    Electrophoresis, 2022 Feb;43(3):487-494.
    PMID: 34679198 DOI: 10.1002/elps.202100268
    The assembly of carbon nanotubes (CNTs) across planner electrodes using dielectrophoresis (DEP) is one of the standard methods used to fabricate CNT-based devices such as sensors. The medium drag velocity caused by electrokinetic phenomena such as electrothermal and electroosmotic might drive CNTs away from the deposition area. This problem becomes critical at large-scale electrode structures due to the high attenuation of the DEP force. Herein, we simulated and experimentally validated a novel DEP setup that uses a top glass cover to minimize the medium drag velocity. The simulation results showed that the drag velocity can be reduced by 2-3 orders of magnitude compared with the basic DEP setup. The simulation also showed that the optimum channel height to result in a significant drag velocity reduction was between 100 μm and 240 μm. We experimentally report, for the first time, the assembly and alignment of CNT bridges across indium tin oxide (ITO) electrodes with spacing up to 125 μm. We also derived an equation to optimize the CNT's concentration in suspensions based on the electrode gap width and channel height. The deposition of long CNTs across ITO electrodes has potential use in transparent electronics and microfluidic systems.
  3. Abdulhameed A, Halin IA, Mohtar MN, Hamidon MN
    ACS Omega, 2022 Feb 01;7(4):3680-3688.
    PMID: 35128276 DOI: 10.1021/acsomega.1c06323
    Surfactants such as sodium dodecyl sulfate (SDS) are used to improve the dispersity of carbon nanotubes (CNTs) in aqueous solutions. The surfactant concentration in CNT solutions is a critical factor in the dielectrophoretic (DEP) manipulation of CNTs. A high surfactant concentration causes a rapid increase in the solution conductivity, while a low concentration results in undesirably large CNT bundles within the solution. The increase in the solution conductivity causes drag velocity that obstructs the CNT manipulation process due to the electrothermal forces induced by the electric field. The presence of large CNT bundles is undesirable since they degrade the device performance. In this work, mathematical modeling and experimental work were used to optimize the concentration of the SDS surfactant in multiwalled carbon nanotube (MWCNT) solutions. The solutions were characterized using dynamic light scattering (DLS) and ultraviolet-visible spectroscopy (UV-Vis) analysis. We found that the optimum SDS concentration in MWCNT solutions for the successful DEP manipulation of MWCNTs was between 0.1 and 0.01 wt %. A novel DEP configuration was then used to assemble MWCNTs across transparent electrodes. The configuration was based on ceiling deposition, where the electrodes were on top of a droplet. The newly proposed configuration reduced the drag velocity and prevented the assembly of large MWCNT bundles. MWCNTs were successfully assembled and aligned across interdigitated electrodes (IDEs). The assembly of MWCNTs from aqueous solutions across transparent electrodes has potential use in future transparent electronics and sensor devices.
  4. Rozaini AZA, Abdulhameed A, Deivasigamani R, Nadzreen N, Zin NM, Kayani AA, et al.
    Electrophoresis, 2023 Aug;44(15-16):1220-1233.
    PMID: 37259263 DOI: 10.1002/elps.202200276
    Characterization of antibiotic-resistant bacteria is a significant concern that persists for the rapid classification and analysis of the bacteria. A technology that utilizes the manipulation of antibiotic-resistant bacteria is key to solving the significant threat of these pathogenic bacteria by rapid characterization profile. Dielectrophoresis (DEP) can differentiate between antibiotic-resistant and susceptible bacteria based on their physical structure and polarization properties. In this work, the DEP response of two Gram-positive bacteria, namely, Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-susceptible S. aureus (MSSA), was investigated and simulated. The DEP characterization was experimentally observed on the bacteria influenced by oxacillin and vancomycin antibiotics. MSSA control without antibiotics has crossover frequencies ( f x 0 ${f_{x0}}$ ) from 6 to 8 MHz, whereas MRSA control is from 2 to 3 MHz. The f x 0 ${f_{x0}}$ changed when bacteria were exposed to the antibiotic. As for MSSA, the f x 0 ${f_{x0}}$ decreased to 3.35 MHz compared to f x 0 ${f_{x0}}$ MSSA control without antibiotics, MRSA, f x 0 ${f_{x0}}$ increased to 7 MHz when compared to MRSA control. The changes in the DEP response of MSSA and MRSA with and without antibiotics were theoretically proven using MyDEP and COMSOL simulation and experimentally based on the modification to the bacteria cell walls. Thus, the DEP response can be employed as a label-free detectable method to sense and differentiate between resistant and susceptible strains with different antibiotic profiles. The developed method can be implemented on a single platform to analyze and identify bacteria for rapid, scalable, and accurate characterization.
  5. Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani AB, Mohamed MA, et al.
    Electrophoresis, 2023 Mar;44(5-6):573-620.
    PMID: 36604943 DOI: 10.1002/elps.202200203
    Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links