Green approach in synthesizing metal nanoparticles has gain new interest from the researchers as metal nanoparticles were widely applied in medical equipment and household products. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. A green synthetic route for the production of stable silver nanoparticles (Ag-NPs) by using aqueous silver nitrate as metal precursor and Artocarpus elasticus stem bark extract act both as reductant and stabilizer is being reported for the first time.
Resource partitioning among tropical bats in agricultural areas of Peninsular Malaysia remains unclear. This study was conducted to evaluate resource partitioning among bats by examining their fecal samples. The main bat species sampled included: Rhinolophus coelophyllus, Rhinolophus malayanus, Rhinolophus pusillus, Rhinolophus refulgens, Taphozous melanopogon and Hipposideros larvatus. Two harp traps were set at different elevations on a hilltop (Gunung Keriang) and two high nets were used in neighboring rice fields at three sites, for three consecutive nights per sampling from April 2021 to February 2022. A total of 301 bats and 1,505 pellets were analyzed using a conventional approach which examined the fecal sample under the microscope. All of the bat species within the study had insects from the order Coleoptera, Lepidoptera, Diptera and Hemiptera in their diet. Larger bats exhibited a greater variety of prey consumption. Male individuals were observed to be generalists while female individuals were specialists, particularly during pregnancy and lactating reproductive stages. Bat species and insect order had a significant impact on the percentage fragment frequency of the insects consumed. Rhinolophus coelophyllus specialized in feeding on Coleoptera and Diptera, H. larvatus fed on Coleoptera, R. malayanus fed on Hemiptera, R. pusillus and T. melanopogon fed on Lepidoptera. Future molecular analysis can be carried out to further identify the insect pests consumed by these bats up to species level. These findings enhance our understanding of bats' ecological roles in agricultural landscapes and contribute to conservation and pest management strategies.
Recordings of bat echolocation and social calls are used for many research purposes from ecological studies to taxonomy. Effective use of these relies on identification of species from the recordings, but comparative recordings or detailed call descriptions to support identification are often lacking for areas with high biodiversity. The ChiroVox website (https://www.chirovox.org) was created to facilitate the sharing of bat sound recordings together with their metadata, including biodiversity data and recording circumstances. To date, more than 30 researchers have contributed over 3,900 recordings of nearly 200 species, making ChiroVox the largest open-access bat call library currently available. Each recording has a unique identifier that can be cited in publications; hence the acoustic analyses are repeatable. Most of the recordings available through the website are from bats whose species identities are confirmed, so they can be used to determine species in recordings where the bats were not captured or could not be identified. We hope that with the help of the bat researcher community, the website will grow rapidly and will serve as a solid source for bat acoustic research and monitoring.