In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products.
Cardiac arrhythmia is a leading cause of cardiovascular disease, with a high fatality rate worldwide. The timely diagnosis of cardiac arrhythmias, determined by irregular and fast heart rate, may help lower the risk of strokes. Electrocardiogram signals have been widely used to identify arrhythmias due to their non-invasive approach. However, the manual process is error-prone and time-consuming. A better alternative is to utilize deep learning models for early automatic identification of cardiac arrhythmia, thereby enhancing diagnosis and treatment. In this article, a novel deep learning model, combining convolutional neural network and bi-directional long short-term memory, is proposed for arrhythmia classification. Specifically, the classification comprises five different classes: non-ectopic (N), supraventricular ectopic (S), ventricular ectopic (V), fusion (F), and unknown (Q) beats. The proposed model is trained, validated, and tested using MIT-BIH and St-Petersburg data sets separately. Also, the performance was measured in terms of precision, accuracy, recall, specificity, and f1-score. The results show that the proposed model achieves training, validation, and testing accuracies of 100%, 98%, and 98%, respectively with the MIT-BIH data set. Lower accuracies were shown for the St-Petersburg data set. The performance of the proposed model based on the MIT-BIH data set is also compared with the performance of existing models based on the MIT-BIH data set.
The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system.
Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.
Nickel (Ni), cobalt (Co), and zinc (Zn) loaded on fibrous silica KCC-1 was investigated for CO2 methanation reactions. Ni/KCC-1 exhibits the highest catalyst performance with a CH4 formation rate of 33.02 × 10-2 molCH4 molmetal-1 s-1, 1.77 times higher than that of Co/KCC-1 followed by Zn/KCC-1 and finally the parent KCC-1. A pyrrole adsorption FTIR study reveals shifting of perturbed N-H stretching decreasing slightly with the addition of metal oxide, suggesting that the basic sites of catalyst were inaccessible due to metal oxide deposition. The strengths of basicity were found to follow sthe equence KCC-1, Ni/KCC-1, Zn/KCC-1, and Co/KCC-1. The data were supported by N2 adsorption desorption analysis, where Co/KCC-1 displayed the greatest reduction in total surface area whereas Ni/KCC-1 displayed the least reduction. The elucidation of difference mechanism pathways has also been studied by in situ IR spectroscopy studies to determine the role of different metal oxides in CO2 methanation. It was discovered that Ni/KCC-1 and Co/KCC-1 follow a dissociative mechanism of CO2 methanation in which the CO2 molecule was dissociated on the surface of the metal oxide before migration onto the catalyst surface. This was confirmed by the evolution of a peak corresponding to carbonyl species (COads) on a metal oxide surface in FTIR spectra. Zn/KCC-1, on the other hand, showed no such peak, indicating associative methanation pathways where a hydrogen molecule interacts with an O atom in CO2 to form COads and OH. These results offers a better understanding for catalytic studies, particularly in the field of CO2 recycling.
Solvent-based recycling of plastic can offer the main improvement when it is employed for pyrolysis-catalytic steam reforming. In this research, plastic waste dissolved in phenol was used as a feed for catalytic cracking and steam reforming reactions for valuable liquid fuels and hydrogen production, which is gaining the attention of researchers globally. Microplastic wastes (MPWs) are tiny plastic particles that arise due to product creation and breakdown of larger plastics. They can be found mainly in several habitats, including seas and freshwater ecosystems. MPWs harm aquatic species, turtles, and birds and were chosen to recover in this study that can be reacted on the catalyst surface. Biphasic anatase-rutile TiO2 with spherical-shaped support for Ni and Pd metals with nanosized particles was synthesized via the hydrothermal treatment method, and its chemical and physical properties were characterized accordingly. According to temperature-programmed desorption of carbon dioxide (CO2-TPD) and temperature-programmed reduction of hydrogen (H2-TPR) results, the incorporation of Pd into Ni/TNPs enhanced the basicity of the support surface and the redox properties of catalysts, which were strongly linked to the improved hydrogen yield (71%) and phenol conversion (79%) at 600 °C. The Ni-Pd/TNPs nanocatalyst, with remarkable stability for 72 h of time on stream, is a promising catalyst for the MPW-phenol cracking and steam reforming reactions toward H2 production for clean energy generation and other environmental applications. Besides, this study has also highlighted the opportunities of overcoming the risk of microplastic waste and converting it into valuable fuels such as decamethyltetrasiloxane, phenanthrene, methyl palmitate, benzenepropanoic acid, benzoic acid, azulene, xanthene, anisole, biphenyl, phthalic acid, diisooctyl phthalate, etc.
The catalytic conversion of CO2 via the Reverse Water Gas Shift (RWGS) reaction for CO production is a promising environment-friendly approach. The greenhouse gas emissions from burning fossil fuels can be used to produce valuable fuels or chemicals through CO2 hydrogenation. Therefore, this project was to study the CO2 conversion via RWGS over various Cu/ZnO catalysts supported by regenerated spent bleaching earth (RSBE) prepared by wet impregnation technique with different Cu : Zn ratios (0.5, 1.0, 1.5, 2.0, 3.0). The causes of environmental pollution from the disposal of spent bleaching earth (SBE) from an edible oil refinery can be eliminated by using it as catalyst support after the regeneration process. The synthesized catalysts were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), temperature-programmed reduction of hydrogen (TPR-H2), pyridine-adsorbed Fourier transform infrared (FTIR-pyridine), temperature programmed desorption of carbon dioxide (TPD-CO2), N2 physisorption, and Fourier transform infrared (FTIR) analysis. The RWGS reaction was carried out in a slurry reactor at 200 °C, with a pressure of 3 MPa, a residence time of 4 h, and catalyst loading of 1.0 g with an H2/CO2 ratio of 3. According to experimental data, the Cu/Zn ratio significantly impacts the catalytic structure and performance. The catalytic activity increased until the Cu : Zn ratio reached the maximum value of 1.5, while a further increase in Cu/Zn ratio inhibited the catalytic performance. The CZR3 catalyst (Cu/Zn ratio of 1.5) with a higher catalytic reducibility, high copper dispersion with small crystalline size, lower total pore volume as well as higher basicity showed superior catalytic performance in terms of CO2 conversion (40.67%) and CO yield (39.91%). Findings on the effect of reaction conditions revealed that higher temperature (>240 °C), higher pressure (>3 MPa), higher reaction time (>4 h) and higher catalyst loading (>1.25 g) could improve CO2 conversion to CO yield. A maximum CO2 conversion of 45.8% and multiple recycling stability of the catalyst were achieved, showing no significant decrease in CO2 conversion.