Displaying all 3 publications

Abstract:
Sort:
  1. Zarkasi KZ, Abell GC, Taylor RS, Neuman C, Hatje E, Tamplin ML, et al.
    J Appl Microbiol, 2014 Jul;117(1):18-27.
    PMID: 24698479 DOI: 10.1111/jam.12514
    The relationship of Atlantic salmon gastrointestinal (GI) tract bacteria to environmental factors, in particular water temperature within a commercial mariculture system, was investigated.
  2. Zarkasi KZ, Taylor RS, Abell GC, Tamplin ML, Glencross BD, Bowman JP
    Microb Ecol, 2016 Apr;71(3):589-603.
    PMID: 26780099 DOI: 10.1007/s00248-015-0728-y
    To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60-86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses.
  3. Li D, Midgley DJ, Ross JP, Oytam Y, Abell GC, Volk H, et al.
    Arch Microbiol, 2012 Jun;194(6):513-23.
    PMID: 22245906 DOI: 10.1007/s00203-012-0788-z
    Microbial diversity within formation water and oil from two compartments in Bokor oil reservoir from a Malaysian petroleum oil field was examined. A total of 1,056 16S rRNA gene clones were screened from each location by amplified ribosomal DNA restriction analysis. All samples were dominated by clones affiliated with Marinobacter, some novel Deferribacteraceae genera and various clones allied to the Methanococci. In addition, either Marinobacterium- or Pseudomonas-like operational taxonomic units were detected from either compartment. A systematic comparison with the existing pertinent studies was undertaken by analysing the microbial amplicons detected and the PCR primers used. The analyses demonstrated that bacterial communities were site specific, while Archaea co-occurred more frequently. Amplicons related to Marinobacter, Marinobacterium and Pseudomonas were detected in a number of the studies examined, suggesting they may be ubiquitous members in oil reservoirs. Further analysis of primers used in those studies suggested that most primer pairs had fairly broad but low matches across the bacterial and archaeal domains, while a minority had selective matches to certain taxa or low matches to all the microbial taxa tested. Thus, it indicated that primers may play an important role in determining which taxa would be detected.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links