Cancer is one of the deadliest diseases, causing million of deaths each year globally. Conventional anti-cancer therapies are non-targeted and have systemic toxicities limiting their versatile applications in many cancers. So, there is an unmet need for more specific therapeutic options that will be effective as well as free from toxicities. Antibody-drug conjugates (ADCs) are suitable alternatives with the right potential and improved therapeutic index for cancer therapy. The ADCs are highly precise new class of biopharmaceutical products that covalently linked a monoclonal antibody (mAb) (binds explicitly to a tumor-associated surface antigen) with a customized cytotoxic drug (kills cancer cells) and tied via a chemical linker (releases the drug). Due to its precise design, it brings about the target cell killing sparing the normal counterpart and free from the toxicities of conventional chemotherapy. It has never been so easy to develop potential ADCs for successful therapeutic usage. With relentless efforts, it took almost a century for scientists to advance the formula and design ADCs for its current clinical applications. Until now, several ADCs have passed successfully through preclinical and clinical trials and because of proven efficacy, a few are approved by the FDA to treat various cancer types. Even though ADCs posed some shortcomings like adverse effects and resistance at various stages of development, with continuous efforts most of these limitations are addressed and overcome to improve their efficacy. In this review, the basics of ADCs, physical and chemical properties, the evolution of design, limitations, and future potentials are discussed.
In recent times, there have been notable advancements in comprehending the potential anti-cancer effects of chrysin (CH), a naturally occurring flavonoid compound found abundantly in various plant sources like honey, propolis, and certain fruits and vegetables. This active compound has garnered significant attention due to its promising therapeutic qualities and minimal toxicity. CH's ability to combat cancer arises from its multifaceted mechanisms of action, including the initiation of apoptosis and the inhibition of proliferation, angiogenesis, metastasis, and cell cycle progression. CH also displays potent antioxidant and anti-inflammatory properties, effectively counteracting the harmful molecules that contribute to DNA damage and the development of cancer. Furthermore, CH has exhibited the potential to sensitize cancer cells to traditional chemotherapy and radiotherapy, amplifying the effectiveness of these treatments while reducing their negative impact on healthy cells. Hence, in this current review, the composition, chemistry, mechanisms of action, safety concerns of CH, along with the feasibility of its nanoformulations. To conclude, the recent investigations into CH's anti-cancer effects present a compelling glimpse into the potential of this natural compound as a complementary therapeutic element in the array of anti-cancer approaches, providing a safer and more comprehensive method of combating this devastating ailment.