The finite element method is gaining acceptance in predicting mechanical response of various loading configurations and material orientations for failure analysis of composite laminates. Both fabrication of laminate samples and experimental procedures are often expensive and time consuming, and hence impractical, especially during the initial design stage. Finite element analyses require minimal amounts of input data, and the resulting stress and strain distributions can be determined throughout each individual ply. Using ANSYSTM, a commercially available finite element package, failure loads were predicted by simulating a uniaxial tensile loading on HTS40/977-2 Carbon/Epoxy composite with [+/-4512s lamination scheme. Two built-in failure theories in ANSYSTM features, viz., Maximum Stress and Tsai-Wu were applied in the simulation. The stress-strain and load-extension curves for both actual testing and FEA were then compared and the results are in good agreement. This paper is intended for researchers who have used or are considering using ANSYSTM for the prediction of failure in composite materials.