Extramammary Paget disease (EMPD) has been known to frequently express androgen receptor (AR). Therefore, androgens could play roles in the biological behavior of Paget cells. 5α-Reductase (5α-red) types 1 and 2 and 17β-hydroxysteroid dehydrogenase type 5 (17β-HSD5) are pivotal in situ regulators of androgen production in androgen-responsive tissues including androgen-dependent neoplasms. Therefore, in this study, we immunolocalized AR, androgen-producing enzymes, and their transcription factors to assess the state of in situ androgen production and actions and its correlation of invasiveness in EMPD. We studied 51 cases of EMPD with known clinicopathological status. AR, 5α-red1, 17β-HSD5, and β-catenin immunoreactivity was evaluated by using the modified H-score method while cyclin D1, p53, forkhead box protein P1, and a proliferation marker, Ki-67, were quantified using labeling index. The mean scores of AR, 5α-red1, and 17β-HSD5 in invasive EMPD were all significantly higher than noninvasive EMPD (P < .0001). Ki-67 labeling index as well as the cyclin D1 score was also significantly higher in invasive than noninvasive lesions of EMPD. These results demonstrated that androgen receptor and androgen-producing enzymes were both associated with cell cycle regulation and subsequently the invasiveness of EMPD lesions and could also indicate those above as potential markers of invasive potentials in EMPD.
Sex steroids have been postulated to influence skin development and functions as well as its pathogenesis. MCC occurs in both sexes; however, the specific differences in pathogenesis among sexes have yet to be conclusively defined. The detailed status of sex steroid receptors (AR, PRA and PRB, and ERα, ERβ) are also unknown in MCC patients. We first immunolocalized sex steroid receptors and compared the results with immunolocalization of relevant transcription factors including SOX2, FOXA1, and Bcl-2 and Ki-67 in 18 cases of MCCs. AR, PRA, PRB, ERα, ERβ, Bcl-2, SOX2, and FOXA1 immunoreactivity was evaluated by using the modified H score method, and Ki-67 was quantified using labeling index. ERβ immunoreactivity was markedly present in all the cases of MCC examined, with relatively weak immunoreactivity of ERα, AR, PRA, and PRB. The status of ERβ immunoreactivity was also significantly correlated with Ki-67 labeling index and Bcl-2 score. These results demonstrated that ERβ could be associated with regulation of both cell proliferation and apoptosis in MCCs.
The sebaceous gland is a major site of steroid synthesis in human skin, but details of the status of steroidogenic enzymes and their regulation in human sebaceous glands under normal and pathological conditions have rarely been reported. Therefore, in this study, we examined the status of steroidogenic enzymes, sex steroid receptors and transcription factors in human sebaceous glands under normal and pathological conditions to explore their possible roles in in situ steroid production in human skin. Immunohistochemical analysis was performed in a total of 59 human skin specimens, including 22 normal human sebaceous glands, 12 with sebaceous nevus, 12 with sebaceous gland hyperplasia, 3 with sebaceoma and 10 with sebaceous carcinoma. Immortalised human SZ95 sebocytes were treated with forskolin or vehicle for 3h, 6h, 12h or 24h, and the mRNA levels of steroidogenic enzymes were evaluated at each time point using quantitative RT-PCR (qPCR). The results of immunohistochemistry demonstrated the immunoreactivity of 3β-HSD1, CYP11A1, StAR, 17β-HSD5, CYP17A1, 5α-red1, PRB, AR and NGFI-B in normal human sebaceous gland, with lower levels of expression in pathological sebaceous glands. The results of the in vitro study also indicated that the expression levels of 3β-HSD1, CYP11A1, StAR, 5α-red1 and NGFI-B were elevated by forskolin. 3β-HSD1 and other steroidogenic enzymes were expressed in sebaceous glands resulting in in situ androgen and progesterone synthesis and their functions.
The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated.
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.