Herein, we report the facile synthesis, characterization and visible-light-driven photocatalytic degradation of perforated curly Zn0.1Ni0.9O nanosheets synthesized by hydrothermal process. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies confirmed the cubic phase crystalline structure and growth of high density perforated curly Zn0.1Ni0.9O nanosheets, respectively. As a photocatalyst, using methylene blue (MB) as model pollutant, the synthesized nanosheets demonstrated a high degradation efficiency of ~76% in 60 min under visible light irradiation. The observed results suggest that the synthesized Zn0.1Ni0.9O nanosheets are attractive photocatalysts for the degradation of toxic organic waste in the water under visible light.
Photocatalysts provide excellent potential for the full removal of organic chemical pollutants as an environmentally friendly technology. It has been noted that under UV-visible light irradiation, nanostructured semiconductor metal oxides photocatalysts can degrade different organic pollutants. The Sn6SiO8/rGO nanocomposite was synthesized by a hydrothermal method. The Sn6SiO8 nanoparticles hexagonal phase was confirmed by XRD and functional groups were analyzed by FT-IR spectroscopy. The bandgap of Sn6SiO8 nanoparticles (NPs) and Sn6SiO8/GO composites were found to be 2.7 eV and 2.5 eV, respectively. SEM images of samples showed that the flakes like morphology. This Sn6SiO8/rGO nanocomposite was testing for photocatalytic dye degradation of MG under visible light illumination and excellent response for the catalysts. The enhancement of photocatalytic performance was mainly attributed to the increased light absorption, charge separation efficiency and specific surface area, proved by UV-vis DRS. Further, the radical trapping experiments revealed that holes (h+) and superoxide radicals (·O-₂) were the main active species for the degradation of MG, and a possible photocatalytic mechanism was discussed.
Biosynthesis of nanoparticles has now become a novel trend in addressing some of the environmental issues by adopting eco-friendly approaches in manoeuvring nanoparticles for various applications. Plants and micro-organisms have been the potential sources of the biological mode of synthesizing nanoparticles as part of their bioremediation process. This principle has been harnessed for synthesizing nanoparticles either extra or intracellularly. In this line of phyto-mediated synthesis, eucalyptus buds have been used for synthesizing gold nanoparticles (Au NPs) under optimized laboratory conditions. The UV-visible spectrum of the Au NPs showed typical surface plasmon resonance at 550 nm (λmax) with a crystalline phase measuring <100 nm in size and monodispersed as revealed from XRD, FESEM, and AFM analyses. The biological role of phytochemical concoction in reducing and stabilizing the Au NPs was clearly identified from FT-IR studies. The antimicrobial effect of the Au NPs against clinically important pathogens viz. Staphylococcus sp., Pseudomonas sp., Bacillus sp. and E. coli determined using the disk diffusion method showed no significant antibacterial effect at all concentrations. Cytotoxicity studies were carried using Vero and HEp-2 cell lines and the 50% inhibition concentration (IC50) was determined to be 1.25 mg and 0.625 mg/mL respectively. Au NPs with potential antimicrobial and anti-proliferative effects could found profound implications in the field of nanomedicine once the toxicity in vivo has been investigated.
The objective of this research is to conduct a comprehensive bibliometric analysis using the Web of Science Core Collection (WoSCC) to examine the current research topics and trends pertaining to stereotactic-based re-irradiation. A bibliometric search was conducted for re-irradiation-related literature published in English from the WoSCC database from 1991 to 2022, using VOSviewer to visualize the results. The extracted information comprises the publication year, overall citation count, average citation rate, keywords, and research domains. We conducted a literature review to identify trends in research on re-irradiation. A total of 19,891 citations were found in 924 qualifying papers that came from 48 different nations. The number of publications and citations has grown steadily since 2008 with the highest number of publications in the year 2018. Similarly, a substantial increase in the number of citations has increased since 2004 and the citation growth rate has been positive between 2004 and 2019 with a peak in 2013. The top authorship patterns were six authors (111 publications and 2498 citations), whereas the highest number of citations per publication was attained with an authorship pattern of 17 authors (C/P = 41.1). The collaboration patterns analysis showed that the largest proportion of publications emanated from the United States with 363 publications (30.9%), followed by Germany with 102 publications (8.7%), and France with 92 publications (7.8%). The majority of the analyzed studies were focused on the brain (30%), head and neck (13%), lung (12%), and spine (10%) and there have been emerging studies on the use of re-irradiation for lung, prostate, pelvic and liver utilizing stereotactic radiotherapy. The main areas of interest have changed over time and are now based on a multidisciplinary approach that integrates advanced imaging techniques, stereotactic treatment delivery, the toxicity of organs at risk, quality of life, and treatment outcomes.
Nanostructure materials are of interest in last few decades due to their unique size-dependent physio-chemical properties. In this paper, zinc oxide (ZnO) and barium doped ZnO nanodisks (NDs) were synthesized using sonochemical method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), UV-vis absorption and dielectric measurements. The XRD and FTIR studies confirm the crystalline nature of ZnO NDs, and the average crystallite size was found to be ~25 nm for pure ZnO and ~22 nm for Ba doped ZnO NDs. SEM study confirmed the spherical shaped ZnO NDs with average sizes in the range of 20-30 nm. The maximum absorbance was obtained in the 200-500 nm regions with a prominent peak absorbance were observed by UV-vis spectra. The corresponding band gap for ZnO NDs and Ba doped ZnO NDs were calculated using Tauc's plot and was found to be 3.12 and 3.04, respectively. The conductivity and dielectric measurements as a function of frequency have been studied.