Advances in reconfigurable liquid-based reconfigurable antennas are enabling new possibilities to fulfil the requirements of more advanced wireless communication systems. In this review, a comparative analysis of various state-of-the-art concepts and techniques for designing reconfigurable antennas using liquid is presented. First, the electrical properties of different liquids at room temperature commonly used in reconfigurable antennas are identified. This is followed by a discussion of various liquid actuation techniques in enabling high frequency reconfigurability. Next, the liquid-based reconfigurable antennas in literature used to achieve the different types of reconfiguration will be critically reviewed. These include frequency-, polarization-, radiation pattern-, and compound reconfigurability. The current concepts of liquid-based reconfigurable antennas can be classified broadly into three basic approaches: altering the physical (and electrical) dimensions of antennas using liquid; applying liquid-based sections as reactive loads; implementation of liquids as dielectric resonators. Each concept and their design approaches will be examined, outlining their benefits, limitations, and possible future improvements.
This work presents the design and optimization of an antenna with defected ground structure (DGS) using characteristic mode analysis (CMA) to enhance bandwidth. This DGS is integrated with a rectangular patch with circular meandered rings (RPCMR) in a wearable format fully using textiles for wireless body area network (WBAN) application. For this integration process, both CMA and the method of moments (MoM) were applied using the same electromagnetic simulation software. This work characterizes and estimates the final shape and dimensions of the DGS using the CMA method, aimed at enhancing antenna bandwidth. The optimization of the dimensions and shape of the DGS is simplified, as the influence of the substrates and excitation is first excluded. This optimizes the required time and resources in the design process, in contrast to the conventional optimization approaches made using full wave "trial and error" simulations on a complete antenna structure. To validate the performance of the antenna on the body, the specific absorption rate is studied. Simulated and measured results indicate that the proposed antenna meets the requirements of wideband on-body operation.
Ganoderma boninense (G. boninense) infection reduces the productivity of oil palms and causes a serious threat to the palm oil industry. This catastrophic disease ultimately destroys the basal tissues of oil palm, causing the eventual death of the palm. Early detection of G. boninense is vital since there is no effective treatment to stop the continuing spread of the disease. This review describes past and future prospects of integrated research of near-infrared spectroscopy (NIRS), machine learning classification for predictive analytics and signal processing towards an early G. boninense detection system. This effort could reduce the cost of plantation management and avoid production losses. Remarkably, (i) spectroscopy techniques are more reliable than other detection techniques such as serological, molecular, biomarker-based sensor and imaging techniques in reactions with organic tissues, (ii) the NIR spectrum is more precise and sensitive to particular diseases, including G. boninense, compared to visible light and (iii) hand-held NIRS for in situ measurement is used to explore the efficacy of an early detection system in real time using ML classifier algorithms and a predictive analytics model. The non-destructive, environmentally friendly (no chemicals involved), mobile and sensitive leads the NIRS with ML and predictive analytics as a significant platform towards early detection of G. boninense in the future.
This paper investigates the use of a Magnetite Polydimethylsiloxane (PDMS) Graphene array sensor in ultra-wide band (UWB) spectrum for microwave imaging applications operated within 4.0-8.0 GHz. The proposed array microwave sensor comprises a Graphene array radiating patch, as well as ground and transmission lines with a substrate of Magnetite PDMS-Ferrite, which is fed by 50 Ω coaxial ports. The Magnetite PDMS substrate associated with low permittivity and low loss tangent realized bandwidth enhancement and the high conductivity of graphene, contributing to a high gain of the UWB array antenna. The combination of 30% (ferrite) and 70% (PDMS) as the sensor's substrate resulted in low permittivity as well as a low loss tangent of 2.6 and 0.01, respectively. The sensor radiated within the UWB band frequency of 2.2-11.2 (GHz) with great energy emitted in the range of 3.5-15.7 dB. Maximum energy of 15.7 dB with 90 × 45 (mm) in small size realized the integration of the sensor for a microwave detection system. The material components of sensor could be implemented for solar panel.