Displaying all 3 publications

Abstract:
Sort:
  1. Al-Atabi M, Chin SB, Luo XY
    J Biomech Eng, 2010 Apr;132(4):041003.
    PMID: 20387966 DOI: 10.1115/1.4001043
    Three-dimensional scaled-up transparent models of three human cystic ducts were prepared on the basis of anatomical specimens. The measurement of pressure drop across the cystic duct models and visualization of the flow structures within these ducts were performed at conditions replicating the physiological state. The flow visualization study confirmed the laminar nature of the flow of bile inside the cystic duct and values of pressure drop coefficient (Cp) decreased as the Reynolds number (Re) increased. The three tested models showed comparable behavior for the curve of Reynolds number versus the pressure drop coefficient. The results show that the tested cystic ducts have both increased pressure drop and complicated flow structures when compared with straight conduits. High resistance in a cystic duct may indicate that the gallbladder has to exert large force in expelling bile to the cystic duct. For patients with diseased gallbladder, and even in healthy persons, gallbladder is known to stiffen with age and it may lose its compliance or flexibility. A high resistance cystic duct coupled with a stiffened gallbladder may result in prolonged stasis of bile in the gallbladder, which is assumed to encourage the formation of gallstones.
  2. Al-Atabi M, Espino DM, Hukins DW, Buchan KG
    Proc Inst Mech Eng H, 2012 Apr;226(4):275-87.
    PMID: 22611868
    Repair of the mitral valve is defined (loosely) as a procedure that alters the valve structure, without replacement, enabling the natural valve itself to continue to perform under the physical conditions to which it is exposed. As the mitral valve is driven by flow and pressure, it should be feasible to analyse and assess its function, failure and repair as a mechanical system. This article reviews the current state of mechanical evaluation of surgical repairs of the failed mitral valve of the heart. This review describes the anatomy and physiology of the mitral valve, followed by the failure of the mitral valve from a mechanical point of view. The surgical methods used to repair failed valves are introduced, while the use of engineering analysis to aid understanding of mitral valve repair is also reviewed. Finally, a section on recommendations for development and future uses of engineering techniques to surgical repair are presented.
  3. Al-Atabi M, Ooi RC, Luo XY, Chin SB, Bird NC
    Med Eng Phys, 2012 Oct;34(8):1177-83.
    PMID: 22217515 DOI: 10.1016/j.medengphy.2011.12.006
    Computational fluid dynamic (CFD) simulations of the three-dimensional flow structures in realistic cystic ducts have been performed to obtain quantitative readings of the flow parameters to compare with clinical measurements. Resin casts of real patients' cystic ducts lumen that possess representative anatomical features were scanned to obtain three-dimensional flow domains that were used in the numerical analysis. The convoluting nature of the studied cystic ducts resulted in strong secondary flow that contributed towards a dimensionless pressure drop that is four times higher than those of a straight circular tube of an equivalent length and average diameter. The numerical pressure drop results across the cystic duct compared very well with those obtained from clinical observations which indicate that CFD is an appropriate tool to investigate the flow and functions of the biliary system. From the hydrodynamic point of view, the cystic duct lumen seems to serve as a passive resistor that strives to provide a constant amount of resistance to control the flow of bile out of the gallbladder. This is mainly achieved by the coupling of the secondary flow effects and bile rheology to provide flow resistance.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links