Displaying all 2 publications

Abstract:
Sort:
  1. Mujafarkani N, Ahamed FMM, Babu KS, Debnath S, Sayed AA, Albadrani GM, et al.
    Heliyon, 2023 Oct;9(10):e20459.
    PMID: 37810859 DOI: 10.1016/j.heliyon.2023.e20459
    In an innovative approach to push the boundaries of antimicrobial and antioxidant strategies, we present the synthesis and characterization of a novel terpolymer derived from N-Phenyl-p-phenylenediamine and 2-aminopyrimidine with formaldehyde in the presence of dimethylformamide as a reaction medium through polycondensation technique. Leveraging this terpolymer as a ligand, we introduce an intriguing terpolymer-metal complex, created with Ni (II) metal ion. In our pursuit to validate the structure and properties of these substances, we performed meticulous characterizations using important spectral studies such as FTIR, electronic, and 1H NMR spectroscopy. This provided us with a unique fingerprint for the (N-Phenyl-p-phenylenediamine-2-aminopyrimidine-formaldehyde) terpolymeric ligand (PAF) and its metal complex. In addition, the molecular weights of PAF terpolymer were established using gel permeation chromatography. Upon investigation, PAF terpolymer and PAF-Ni complex exhibited impressive antimicrobial activity, tested by the disc-diffusion technique. Both demonstrated potency against a range of harmful bacterial and fungal strains, including Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger. In an extension to their biological applications, we evaluated the free radical scavenging activity of PAF terpolymer and PAF-Ni complex using the DPPH assay. The complex PAF-Ni showcased an enhanced scavenging activity 73.94% (IC50 = 17.58) compared to the ligand PAF 63.06% (IC50 = 27.61) at 100 μg/ml indicating its potential role in oxidative stress management.
  2. Che-Zulkifli CI, Akil MAMM, Amin-Safwan A, Mahsol HH, Al-Ghadi MQ, Swelum AA, et al.
    Anim Biotechnol, 2023 Dec;34(8):4126-4134.
    PMID: 37830156 DOI: 10.1080/10495398.2023.2267621
    Sex reversal of male to female is a characteristic of barramundi (Lates calcarifer), which is affected by several factors, thereby changing the broodstock population. A study was conducted in floating cages in Langkawi, Malaysia, to determine the weight point at the onset of the sex reversal phenomena. A total of 75 female and 55 male adult individuals (3-4 weeks of age) were sampled from the fish cultured in cages to ascertain their sex at different weights. The water temperature and salinity values were 29.82 °C and 33.12 ppt, respectively. The specimens were classified into twelve bodyweight classes (2.00-8.00 ± 0.5 kg intervals). Female specimen body weight distribution was highest in the 6.01-6.50 kg class (22.6%), followed by the 5.51-6.00 kg and 4.51-5.00 class (13.3%), while male specimen body weight distribution was highest in the 4.51-5.00 kg class (32.1%), followed by the 4.01-4.50 kg class (30.3%). Length-to-weight relationships for females and males of Asian Seabass indicated positive allometric growth. The correlation between body weight and GSI, using Pearson's correlation, for both sexes, for the male and female barramundi, there was a weak correlation between body weight and GSI, which was 37 and 30%, respectively. Based on the present study's findings, it can be concluded that sex reversal from male to female in Barramundi largely occurred at 4.57 kg body weight and 66.8 cm total length.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links