The development of intelligent packaging based on natural and biodegradable resources is getting more attention by researchers in recent years. The aim of this study was to develop and characterize a pH-sensitive films based on sago starch and incorporated with anthocyanin from torch ginger. The pH-sensitive films were fabricated by casting method with incorporation of different torch ginger extract (TGE) concentration. The surface morphology, physicochemical, barrier, and mechanical properties as well as the pH-sensitivity of films were investigated. The film with the highest concentration of TGE showed the lowest tensile strength (4.26 N/m2), toughness (2.54 MJ/m3), Young's modulus (73.96 MPa) and water vapour permeability (2.6 × 10-4 g·m/day·kPa·m2). However, its elongation at break (85.14%), moisture content (0.27%) and water solubility (37.92%) were the highest compared to other films. pH sensitivity analysis showed that the films containing TGE extract, changes in colour by changing the pH. The colour of films changed from pink to slightly green as the pH increased from pH 4 to 9. Thus, the developed pH-sensitive film with torch ginger extract has potential as intelligent packaging for detection of food freshness or spoilage to ensure their quality and safe consumption.
A novel intelligent pH-sensing indicator based on gelatin film and anthocyanin extracted from dragon fruit skin (Hylocereus polyrhizus) (DFSE) as a natural dye was developed to monitor food freshness by the casting method. Anthocyanin content of DFSE was 15.66 ± 1.59 mg/L. Dragon fruit bovine gelatin films were characterized by Fourier transform infrared spectroscopy (FTIR) and observed by a scanning electron microscope (SEM). Moisture content, mechanical properties, water solubility, water vapor permeability (WVP), light transmittance, color, and pH-sensing evaluations were evaluated for potential application. FTIR spectroscopy revealed that the extracted anthocyanin could interact with the other film components through hydrogen bonds. When the extract was added, films showed a smooth and clear surface as observed by SEM. The addition of anthocyanin increased the moisture content, thickness, and water solubility of the films, but decreased the WVP and light transmittance of films. Also, the incorporation of 15% v/v DFSE decreased the tensile strength from 17.04 to 12.91 MPa, increasing the elongation at break from 91.19% to 107.86%. The films showed higher ΔE with increasing DFSE content, which indicated that the film had good color variability. A significant difference in the color of the films was observed with exposure to different pH buffer solutions. The findings demonstrated that gelatin film incorporated with DFSE could be used as a visual indicator of pH variations to monitor the freshness of foods during storage time.
Current environmental concerns fostered a strong interest in extracting polymers from renewable feedstocks. Chitosan, a second most abundant polysaccharide after cellulose, may prove to be a promising green material owing to its renewability, inherent biodegradablity, natural availability, non-toxicity, and ease of modification. This review is intended to comprehensively overview the recent developments on the isolation of chitosan from chitin, its modification and applications as a reinforcing candidate for food packaging materials, emphasizing the scientific underpinnings arising from its physicochemical properties, antimicrobial, antioxidant, and antifungal activities. We review various chitosan-reinforced composites reported in the literature and comprehensively present intriguing mechanical and other functional properties. We highlight the contribution of these mechanically robust and responsive materials to extend the shelf-life and maintain the qualities of a wide range of food commodities. Finally, we assess critical challenges and highlight future opportunities towards understanding the versatile applications of chitosan nanocomposites.