Displaying all 2 publications

Abstract:
Sort:
  1. Mustafa WA, Yazid H, Alquran H, Al-Issa Y, Junaini S
    PLoS One, 2024;19(6):e0306010.
    PMID: 38941319 DOI: 10.1371/journal.pone.0306010
    Weld defect inspection is an essential aspect of testing in industries field. From a human viewpoint, a manual inspection can make appropriate justification more difficult and lead to incorrect identification during weld defect detection. Weld defect inspection uses X-radiography testing, which is now mostly outdated. Recently, numerous researchers have utilized X-radiography digital images to inspect the defect. As a result, for error-free inspection, an autonomous weld detection and classification system are required. One of the most difficult issues in the field of image processing, particularly for enhancing image quality, is the issue of contrast variation and luminosity. Enhancement is carried out by adjusting the brightness of the dark or bright intensity to boost segmentation performance and image quality. To equalize contrast variation and luminosity, many different approaches have recently been put forth. In this research, a novel approach called Hybrid Statistical Enhancement (HSE), which is based on a direct strategy using statistical data, is proposed. The HSE method divided each pixel into three groups, the foreground, border, and problematic region, using the mean and standard deviation of a global and local neighborhood (luminosity and contrast). To illustrate the impact of the HSE method on the segmentation or detection stage, the datasets, specifically the weld defect image, were used. Bernsen and Otsu's methods are the two segmentation techniques utilized. The findings from the objective and visual elements demonstrated that the HSE approach might automatically improve segmentation output while effectively enhancing contrast variation and normalizing luminosity. In comparison to the Homomorphic Filter (HF) and Difference of Gaussian (DoG) approaches, the segmentation results for HSE images had the lowest result according to Misclassification Error (ME). After being applied to the HSE images during the segmentation stage, every quantitative result showed an increase. For example, accuracy increased from 64.171 to 84.964. In summary, the application of the HSE method has resulted in an effective and efficient outcome for background correction as well as improving the quality of images.
  2. Qasmieh IA, Alquran H, Zyout A, Al-Issa Y, Mustafa WA, Alsalatie M
    Diagnostics (Basel), 2022 Dec 17;12(12).
    PMID: 36553211 DOI: 10.3390/diagnostics12123204
    A corneal ulcers are one of the most common eye diseases. They come from various infections, such as bacteria, viruses, or parasites. They may lead to ocular morbidity and visual disability. Therefore, early detection can reduce the probability of reaching the visually impaired. One of the most common techniques exploited for corneal ulcer screening is slit-lamp images. This paper proposes two highly accurate automated systems to localize the corneal ulcer region. The designed approaches are image processing techniques with Hough transform and deep learning approaches. The two methods are validated and tested on the publicly available SUSTech-SYSU database. The accuracy is evaluated and compared between both systems. Both systems achieve an accuracy of more than 90%. However, the deep learning approach is more accurate than the traditional image processing techniques. It reaches 98.9% accuracy and Dice similarity 99.3%. However, the first method does not require parameters to optimize an explicit training model. The two approaches can perform well in the medical field. Moreover, the first model has more leverage than the deep learning model because the last one needs a large training dataset to build reliable software in clinics. Both proposed methods help physicians in corneal ulcer level assessment and improve treatment efficiency.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links