Displaying all 3 publications

Abstract:
Sort:
  1. Ain QU, Khan MA, Yaqoob MM, Khattak UF, Sajid Z, Khan MI, et al.
    Diagnostics (Basel), 2023 Jul 04;13(13).
    PMID: 37443658 DOI: 10.3390/diagnostics13132264
    Cancer, including the highly dangerous melanoma, is marked by uncontrolled cell growth and the possibility of spreading to other parts of the body. However, the conventional approach to machine learning relies on centralized training data, posing challenges for data privacy in healthcare systems driven by artificial intelligence. The collection of data from diverse sensors leads to increased computing costs, while privacy restrictions make it challenging to employ traditional machine learning methods. Researchers are currently confronted with the formidable task of developing a skin cancer prediction technique that takes privacy concerns into account while simultaneously improving accuracy. In this work, we aimed to propose a decentralized privacy-aware learning mechanism to accurately predict melanoma skin cancer. In this research we analyzed federated learning from the skin cancer database. The results from the study showed that 92% accuracy was achieved by the proposed method, which was higher than baseline algorithms.
  2. Haq I, Mazhar T, Asif RN, Ghadi YY, Ullah N, Khan MA, et al.
    Heliyon, 2024 Jan 30;10(2):e24403.
    PMID: 38304780 DOI: 10.1016/j.heliyon.2024.e24403
    The HT-29 cell line, derived from human colon cancer, is valuable for biological and cancer research applications. Early detection is crucial for improving the chances of survival, and researchers are introducing new techniques for accurate cancer diagnosis. This study introduces an efficient deep learning-based method for detecting and counting colorectal cancer cells (HT-29). The colorectal cancer cell line was procured from a company. Further, the cancer cells were cultured, and a transwell experiment was conducted in the lab to collect the dataset of colorectal cancer cell images via fluorescence microscopy. Of the 566 images, 80 % were allocated to the training set, and the remaining 20 % were assigned to the testing set. The HT-29 cell detection and counting in medical images is performed by integrating YOLOv2, ResNet-50, and ResNet-18 architectures. The accuracy achieved by ResNet-18 is 98.70 % and ResNet-50 is 96.66 %. The study achieves its primary objective by focusing on detecting and quantifying congested and overlapping colorectal cancer cells within the images. This innovative work constitutes a significant development in overlapping cancer cell detection and counting, paving the way for novel advancements and opening new avenues for research and clinical applications. Researchers can extend the study by exploring variations in ResNet and YOLO architectures to optimize object detection performance. Further investigation into real-time deployment strategies will enhance the practical applicability of these models.
  3. Saqib SM, Zubair Asghar M, Iqbal M, Al-Rasheed A, Amir Khan M, Ghadi Y, et al.
    PeerJ Comput Sci, 2024;10:e1995.
    PMID: 38686004 DOI: 10.7717/peerj-cs.1995
    The detection of natural images, such as glaciers and mountains, holds practical applications in transportation automation and outdoor activities. Convolutional neural networks (CNNs) have been widely employed for image recognition and classification tasks. While previous studies have focused on fruits, land sliding, and medical images, there is a need for further research on the detection of natural images, particularly glaciers and mountains. To address the limitations of traditional CNNs, such as vanishing gradients and the need for many layers, the proposed work introduces a novel model called DenseHillNet. The model utilizes a DenseHillNet architecture, a type of CNN with densely connected layers, to accurately classify images as glaciers or mountains. The model contributes to the development of automation technologies in transportation and outdoor activities. The dataset used in this study comprises 3,096 images of each of the "glacier" and "mountain" categories. Rigorous methodology was employed for dataset preparation and model training, ensuring the validity of the results. A comparison with a previous work revealed that the proposed DenseHillNet model, trained on both glacier and mountain images, achieved higher accuracy (86%) compared to a CNN model that only utilized glacier images (72%). Researchers and graduate students are the audience of our article.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links