Displaying all 8 publications

Abstract:
Sort:
  1. Shehzad MT, Hameed A, Al-Rashida M, Imran A, Uroos M, Asari A, et al.
    Bioorg Chem, 2019 11;92:103244.
    PMID: 31541804 DOI: 10.1016/j.bioorg.2019.103244
    The role of aldose reductase (ALR2) in diabetes mellitus is well-established. Our interest in finding ALR2 inhibitors led us to explore the inhibitory potential of new thiosemicarbazones. In this study, we have synthesized adamantyl-thiosemicarbazones and screened them as aldehyde reductase (ALR1) and aldose reductase (ALR2) inhibitors. The compounds bearing phenyl 3a, 2-methylphenyl 3g and 2,6-dimethylphenyl 3m have been identified as most potent ALR2 inhibitors with IC50 values of 3.99 ± 0.38, 3.55 ± 0.26 and 1.37 ± 0.92 µM, respectively, compared with sorbinil (IC50 = 3.14 ± 0.02 μM). The compounds 3a, 3g, and 3m also inhibit ALR1 with IC50 value of 7.75 ± 0.28, 7.26 ± 0.39 and 7.04 ± 2.23 µM, respectively. Molecular docking was also performed for putative binding of potent inhibitors with target enzyme ALR2. The most potent 2,6-dimethylphenyl bearing thiosemicarbazone 3m (IC50 = 1.37 ± 0.92 µM for ALR2) and other two compound 3a and 3g could potentially lead for the development of new therapeutic agents.
  2. Rafique R, Khan KM, Arshia, Kanwal, Chigurupati S, Wadood A, et al.
    Bioorg Chem, 2020 01;94:103195.
    PMID: 31451297 DOI: 10.1016/j.bioorg.2019.103195
    The current study describes the discovery of novel inhibitors of α-glucosidase and α-amylase enzymes. For that purpose, new hybrid analogs of N-hydrazinecarbothioamide substituted indazoles 4-18 were synthesized and fully characterized by EI-MS, FAB-MS, HRFAB-MS, 1H-, and 13C NMR spectroscopic techniques. Stereochemistry of the imine double bond was established by NOESY measurements. All derivatives 4-18 with their intermediates 1-3, were evaluated for in vitro α-glucosidase and α-amylase enzyme inhibition. It is worth mentioning that all synthetic compounds showed good inhibition potential in the range of 1.54 ± 0.02-4.89 ± 0.02 µM for α-glucosidase and for α-amylase 1.42 ± 0.04-4.5 ± 0.18 µM in comparison with the standard acarbose (IC50 value of 1.36 ± 0.01 µM). In silico studies were carried out to rationalize the mode of binding interaction of ligands with the active site of enzymes. Moreover, enzyme inhibitory kinetic characterization was also performed to understand the mechanism of enzyme inhibition.
  3. Shehzad MT, Imran A, Njateng GSS, Hameed A, Islam M, Al-Rashida M, et al.
    Bioorg Chem, 2019 06;87:857-866.
    PMID: 30551808 DOI: 10.1016/j.bioorg.2018.12.006
    Aldose reductase is an important enzyme in the polyol pathway, where glucose is converted to fructose, and sorbitol is released. Aldose reductase activity increases in diabetes as the glucose levels increase, resulting in increased sorbitol production. Sorbitol, being less cell permeable tends to accumulate in tissues such as eye lenses, peripheral nerves and glomerulus that are not insulin sensitive. This excessive build-up of sorbitol is responsible for diabetes associated complications such as retinopathy and neuropathy. In continuation of our interest to design and discover potent inhibitors of aldo-keto reductases (AKRs; aldehyde reductase ALR1 or AKR1A, and aldose reductase ALR2 or AKR1B), herein we designed and investigated a series of new benzoxazinone-thiosemicarbazones (3a-r) as ALR2 and ALR1 inhibitors. Most compounds exhibited excellent inhibitory activities with IC50 values in lower micro-molar range. Compounds 3b and 3l were found to be most active ALR2 inhibitors with IC50 values of 0.52 ± 0.04 and 0.19 ± 0.03 μM, respectively, both compounds were more effective inhibitors as compared to the standard ALR2 inhibitor (sorbinil, with IC50 value of 3.14 ± 0.02 μM).
  4. Qazi SU, Rahman SU, Awan AN, Al-Rashida M, Alharthy RD, Asari A, et al.
    Bioorg Chem, 2018 09;79:19-26.
    PMID: 29709568 DOI: 10.1016/j.bioorg.2018.03.029
    A series of hydrazinecarboxamide derivatives were synthesized and examined against urease for their inhibitory activity. Among the series, the 1-(3-fluorobenzylidene)semicarbazide (4a) (IC50 = 0.52 ± 0.45 µM), 4u (IC50 = 1.23 ± 0.32 µM) and 4h (IC50 = 2.22 ± 0.32 µM) were found most potent. Furthermore, the molecular docking study was also performed to demonstrate the binding mode of the active hydrazinecarboxamide with the enzyme, urease. In order to estimate drug likeness of compounds, in silico ADME evaluation was carried out. All compounds exhibited favorable ADME profiles with good predicted oral bioavailability.
  5. Isaac IO, Al-Rashida M, Rahman SU, Alharthy RD, Asari A, Hameed A, et al.
    Bioorg Chem, 2019 02;82:6-16.
    PMID: 30267972 DOI: 10.1016/j.bioorg.2018.09.032
    Urease is a bacterial enzyme that is responsible for virulence of various pathogenic bacteria such as Staphylococcus aureus, Proteus mirabilis, Klebsiella pneumoniae, Ureaplasma urealyticum, Helicobacter pylori and Mycobacterium tuberculosis. Increased urease activity aids in survival and colonization of pathogenic bacteria causing several disorders especially gastric ulceration. Hence, urease inhibitors are used for treatment of such diseases. In search of new molecules with better urease inhibitory activity, herein we report a series of acridine derived (thio)semicarbazones (4a-4e, 6a-6l) that were found to be active against urease enzyme. Molecular docking studies were carried out to better comprehend the preferential mode of binding of these compounds against urease enzyme. Docking against urease from pathogenic bacterium S. pasteurii was also carried out with favorable results. In silico ADME evaluation was done to determine drug likeness of synthesized compounds.
  6. Younus HA, Saeed M, Mahmood A, Jadoon MSK, Hameed A, Asari A, et al.
    Bioorg Chem, 2023 May;134:106450.
    PMID: 36924652 DOI: 10.1016/j.bioorg.2023.106450
    Ectonucleotidases, a well-known superfamily of plasma membrane located metalloenzymes plays a central role in mediating the process of purinergic cell signaling. Major functions performed by these enzymes include the hydrolysis of extracellular nucleosides and nucleotides which are considered as important cell-signaling molecules. Any (patho)-physiologically induced disruption in this purinergic cell signaling leads to several disorders, hence these enzymes are important drug targets for therapeutic purposes. Among the major challenges faced in the design of inhibitors of ectonucleotidases, an important one is the lack of selective inhibitors. Access to highly selective inhibitors via a facile synthetic route will not only be beneficial therapeutically, but will also lead to an increase in our understanding of intricate interplay between members of ectonucleotidase enzymes in relation to their selective activation and/or inhibition in different cells and tissues. Herein we describe synthesis of highly selective inhibitors of human intestinal alkaline phosphatase (h-IAP) and human tissue non-specific alkaline phosphatase (h-TNAP), containing chromone sulfonamide and sulfonylhydrazone scaffolds. Compound 1c exhibited highest (and most selective) h-IAP inhibition activity (h-IAP IC50 = 0.51 ± 0.20 µM; h-TNAP = 36.5%) and compound 3k showed highest activity and selective inhibition against h-TNAP (h-TNAP IC50 = 1.41 ± 0.10 µM; h-IAP = 43.1%). These compounds were also evaluated against another member of ectonucleotidase family, that is rat and human ecto-5'-nucleotidase (r-e5'NT and h-e5'NT). Some of the compounds exhibited excellent inhibitory activity against ecto-5'-nucleotidase. Compound 2 g exhibited highest inhibition against h-e5'NT (IC50 = 0.18 ± 0.02 µM). To rationalize the interactions with the binding site, molecular docking studies were carried out.
  7. Younus HA, Hameed A, Mahmood A, Khan MS, Saeed M, Batool F, et al.
    Bioorg Chem, 2020 07;100:103827.
    PMID: 32402802 DOI: 10.1016/j.bioorg.2020.103827
    Medicinal importance of the sulfonylhydrazones is well-evident owing to their binding ability with zinc containing metalloenzymes. In the present study, we have synthesized different series of sulfonylhydrazones by using facile synthetic methods in good to excellent yield. All the successfully prepared sulfonylhydrazones were screened for ectonucleotidase (ALP & e5'NT) inhibitory activity. Among the chromen-2-one scaffold based sulfonylhydrazones, the compounds 7 was found to be most potent inhibitor for h-TNAP (human tissue non-specific alkaline phosphatase) and h-IAP (human intestinal alkaline phosphatase) with IC50 values of 1.02 ± 0.13 and 0.32 ± 0.0 3 µM respectively, compared with levamisole (IC50 = 25.2 ± 1.90 µM for h-TNAP) and l-phenylalanine (IC50 = 100 ± 3.00 µM for h-IAP) as standards. Further, the chromen-2-one based molecule 5a showed excellent activity against h-ecto 5'-NT (human ecto-5'-nucleotidase) with IC50 value of 0.29 ± 0.004 µM compared to standard, sulfamic acid (IC50 = 42.1 ± 7.8 µM). However, among the series of phenyl ring based sulfonylhydrazones, compound 9d was found to be most potent against h-TNAP and h-IAP with IC50 values of 0.85 ± 0.08 and 0.52 ± 0.03 µM, respectively. Moreover, in silico studies were also carried to demonstrate their putative binding with the target enzymes. The potent compounds 5a, 7, and 9d against different ectonucleotidases (h-ecto 5'-NT, h-TNAP, h-IAP) could potentially serve as lead for the development of new therapeutic agents.
  8. Saleem Khan M, Asif Nawaz M, Jalil S, Rashid F, Hameed A, Asari A, et al.
    Bioorg Chem, 2022 01;118:105457.
    PMID: 34798458 DOI: 10.1016/j.bioorg.2021.105457
    Substitution of hazardous and often harmful organic solvents with "green" and "sustainable" alternative reaction media is always desirous. Ionic liquids (IL) have emerged as valuable and versatile liquids that can replace most organic solvents in a variety of syntheses. However, recently new types of low melting mixtures termed as Deep Eutectic Solvents (DES) have been utilized in organic syntheses. DES are non-volatile in nature, have sufficient thermal stability, and also have the ability to be recycled and reused. Hence DES have been used as alternative reaction media to perform different organic reactions. The availability of green, inexpensive and easy to handle alternative solvents for organic synthesis is still scarce, hence our interest in DES mediated syntheses. Herein we have investigated Biginelli reaction in different DES for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Monoamine oxidases and cholinesterases are important drug targets for the treatment of various neurological disorders such as Alzheimer's disease, Parkinson's disease, depression and anxiety. The compounds synthesized herein were evaluated for their inhibitory potential against these enzymes. Some of the compounds were found to be highly potent and selective inhibitors. Compounds 1 h and 1c were the most active monoamine oxidase A (MAO A) (IC50 = 0.31 ± 0.11 µM) and monoamine oxidase B (MAO B) (IC50 = 0.34 ± 0.04 µM) inhibitors respectively. All compounds were selective AChE inhibitors and did not inhibit BChE (<29% inhibition). Compound 1 k (IC50 = 0.13 ± 0.09 µM) was the most active AChE inhibitor.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links