Displaying all 6 publications

Abstract:
Sort:
  1. Ghaleb FA, Al-Rimy BAS, Boulila W, Saeed F, Kamat M, Foad Rohani M, et al.
    Comput Intell Neurosci, 2021;2021:2977954.
    PMID: 34413885 DOI: 10.1155/2021/2977954
    Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV). Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth distribution, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms equally distribute the interference reduction on the links to achieve fairness which neither guarantees a fair distribution of the network bandwidth nor eliminates node starvation. In addition, the metaheuristic-based solutions such as genetic algorithm, which is commonly used for WMN, use randomness in creating initial population and selecting the new generation usually leading the search to local minima. To this end, this study proposes a Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) to solve node starvation problem in wireless mesh networks. FA-SCGA-CAA maximizes link fairness while minimizing link interference using a genetic algorithm (GA) with a novel nonlinear fairness-oriented fitness function. The primary chromosome with powerful genes is created based on multicriterion links ranking channel assignment algorithm. Such a chromosome was used with a proposed semichaotic technique to create a strong population that directs the search towards the global minima effectively and efficiently. The proposed semichaotic technique was also used during the mutation and parent selection of the new genes. Extensive experiments were conducted to evaluate the proposed algorithm. A comparison with related work shows that the proposed FA-SCGA-CAA reduced the potential node starvation by 22% and improved network capacity utilization by 23%. It can be concluded that the proposed FA-SCGA-CAA is reliable to maintain high node-level fairness while maximizing the utilization of the network resources, which is the ultimate goal of many wireless networks.
  2. Hussain S, Mustafa MW, Al-Shqeerat KHA, Saeed F, Al-Rimy BAS
    Sensors (Basel), 2021 Dec 17;21(24).
    PMID: 34960516 DOI: 10.3390/s21248423
    This study presents a novel feature-engineered-natural gradient descent ensemble-boosting (NGBoost) machine-learning framework for detecting fraud in power consumption data. The proposed framework was sequentially executed in three stages: data pre-processing, feature engineering, and model evaluation. It utilized the random forest algorithm-based imputation technique initially to impute the missing data entries in the acquired smart meter dataset. In the second phase, the majority weighted minority oversampling technique (MWMOTE) algorithm was used to avoid an unequal distribution of data samples among different classes. The time-series feature-extraction library and whale optimization algorithm were utilized to extract and select the most relevant features from the kWh reading of consumers. Once the most relevant features were acquired, the model training and testing process was initiated by using the NGBoost algorithm to classify the consumers into two distinct categories ("Healthy" and "Theft"). Finally, each input feature's impact (positive or negative) in predicting the target variable was recognized with the tree SHAP additive-explanations algorithm. The proposed framework achieved an accuracy of 93%, recall of 91%, and precision of 95%, which was greater than all the competing models, and thus validated its efficacy and significance in the studied field of research.
  3. Al-Rimy BAS, Saeed F, Al-Sarem M, Albarrak AM, Qasem SN
    Diagnostics (Basel), 2023 May 29;13(11).
    PMID: 37296755 DOI: 10.3390/diagnostics13111903
    Knee osteoarthritis (OA) detection is an important area of research in health informatics that aims to improve the accuracy of diagnosing this debilitating condition. In this paper, we investigate the ability of DenseNet169, a deep convolutional neural network architecture, for knee osteoarthritis detection using X-ray images. We focus on the use of the DenseNet169 architecture and propose an adaptive early stopping technique that utilizes gradual cross-entropy loss estimation. The proposed approach allows for the efficient selection of the optimal number of training epochs, thus preventing overfitting. To achieve the goal of this study, the adaptive early stopping mechanism that observes the validation accuracy as a threshold was designed. Then, the gradual cross-entropy (GCE) loss estimation technique was developed and integrated to the epoch training mechanism. Both adaptive early stopping and GCE were incorporated into the DenseNet169 for the OA detection model. The performance of the model was measured using several metrics including accuracy, precision, and recall. The obtained results were compared with those obtained from the existing works. The comparison shows that the proposed model outperformed the existing solutions in terms of accuracy, precision, recall, and loss performance, which indicates that the adaptive early stopping coupled with GCE improved the ability of DenseNet169 to accurately detect knee OA.
  4. Ali A, Al-Rimy BAS, Alsubaei FS, Almazroi AA, Almazroi AA
    Sensors (Basel), 2023 Jul 28;23(15).
    PMID: 37571545 DOI: 10.3390/s23156762
    The swift advancement of the Internet of Things (IoT), coupled with the growing application of healthcare software in this area, has given rise to significant worries about the protection and confidentiality of critical health data. To address these challenges, blockchain technology has emerged as a promising solution, providing decentralized and immutable data storage and transparent transaction records. However, traditional blockchain systems still face limitations in terms of preserving data privacy. This paper proposes a novel approach to enhancing privacy preservation in IoT-based healthcare applications using homomorphic encryption techniques combined with blockchain technology. Homomorphic encryption facilitates the performance of calculations on encrypted data without requiring decryption, thus safeguarding the data's privacy throughout the computational process. The encrypted data can be processed and analyzed by authorized parties without revealing the actual contents, thereby protecting patient privacy. Furthermore, our approach incorporates smart contracts within the blockchain network to enforce access control and to define data-sharing policies. These smart contracts provide fine-grained permission settings, which ensure that only authorized entities can access and utilize the encrypted data. These settings protect the data from being viewed by unauthorized parties. In addition, our system generates an audit record of all data transactions, which improves both accountability and transparency. We have provided a comparative evaluation with the standard models, taking into account factors such as communication expense, transaction volume, and security. The findings of our experiments suggest that our strategy protects the confidentiality of the data while at the same time enabling effective data processing and analysis. In conclusion, the combination of homomorphic encryption and blockchain technology presents a solution that is both resilient and protective of users' privacy for healthcare applications integrated with IoT. This strategy offers a safe and open setting for the management and exchange of sensitive patient medical data, while simultaneously preserving the confidentiality of the patients involved.
  5. Ali A, Al-Rimy BAS, Tin TT, Altamimi SN, Qasem SN, Saeed F
    Sensors (Basel), 2023 Aug 28;23(17).
    PMID: 37687931 DOI: 10.3390/s23177476
    Precision medicine has emerged as a transformative approach to healthcare, aiming to deliver personalized treatments and therapies tailored to individual patients. However, the realization of precision medicine relies heavily on the availability of comprehensive and diverse medical data. In this context, blockchain-enabled federated learning, coupled with electronic medical records (EMRs), presents a groundbreaking solution to unlock revolutionary insights in precision medicine. This abstract explores the potential of blockchain technology to empower precision medicine by enabling secure and decentralized data sharing and analysis. By leveraging blockchain's immutability, transparency, and cryptographic protocols, federated learning can be conducted on distributed EMR datasets without compromising patient privacy. The integration of blockchain technology ensures data integrity, traceability, and consent management, thereby addressing critical concerns associated with data privacy and security. Through the federated learning paradigm, healthcare institutions and research organizations can collaboratively train machine learning models on locally stored EMR data, without the need for data centralization. The blockchain acts as a decentralized ledger, securely recording the training process and aggregating model updates while preserving data privacy at its source. This approach allows the discovery of patterns, correlations, and novel insights across a wide range of medical conditions and patient populations. By unlocking revolutionary insights through blockchain-enabled federated learning and EMRs, precision medicine can revolutionize healthcare delivery. This paradigm shift has the potential to improve diagnosis accuracy, optimize treatment plans, identify subpopulations for clinical trials, and expedite the development of novel therapies. Furthermore, the transparent and auditable nature of blockchain technology enhances trust among stakeholders, enabling greater collaboration, data sharing, and collective intelligence in the pursuit of advancing precision medicine. In conclusion, this abstract highlights the transformative potential of blockchain-enabled federated learning in empowering precision medicine. By unlocking revolutionary insights from diverse and distributed EMR datasets, this approach paves the way for a future where healthcare is personalized, efficient, and tailored to the unique needs of each patient.
  6. Ali AM, Ghaleb FA, Al-Rimy BAS, Alsolami FJ, Khan AI
    Sensors (Basel), 2022 Sep 15;22(18).
    PMID: 36146319 DOI: 10.3390/s22186970
    Recently, fake news has been widely spread through the Internet due to the increased use of social media for communication. Fake news has become a significant concern due to its harmful impact on individual attitudes and the community's behavior. Researchers and social media service providers have commonly utilized artificial intelligence techniques in the recent few years to rein in fake news propagation. However, fake news detection is challenging due to the use of political language and the high linguistic similarities between real and fake news. In addition, most news sentences are short, therefore finding valuable representative features that machine learning classifiers can use to distinguish between fake and authentic news is difficult because both false and legitimate news have comparable language traits. Existing fake news solutions suffer from low detection performance due to improper representation and model design. This study aims at improving the detection accuracy by proposing a deep ensemble fake news detection model using the sequential deep learning technique. The proposed model was constructed in three phases. In the first phase, features were extracted from news contents, preprocessed using natural language processing techniques, enriched using n-gram, and represented using the term frequency-inverse term frequency technique. In the second phase, an ensemble model based on deep learning was constructed as follows. Multiple binary classifiers were trained using sequential deep learning networks to extract the representative hidden features that could accurately classify news types. In the third phase, a multi-class classifier was constructed based on multilayer perceptron (MLP) and trained using the features extracted from the aggregated outputs of the deep learning-based binary classifiers for final classification. The two popular and well-known datasets (LIAR and ISOT) were used with different classifiers to benchmark the proposed model. Compared with the state-of-the-art models, which use deep contextualized representation with convolutional neural network (CNN), the proposed model shows significant improvements (2.41%) in the overall performance in terms of the F1score for the LIAR dataset, which is more challenging than other datasets. Meanwhile, the proposed model achieves 100% accuracy with ISOT. The study demonstrates that traditional features extracted from news content with proper model design outperform the existing models that were constructed based on text embedding techniques.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links