Displaying all 3 publications

Abstract:
Sort:
  1. Karim FK, Jalab HA, Ibrahim RW, Al-Shamasneh AR
    J King Saud Univ Sci, 2022 Oct;34(7):102254.
    PMID: 35957965 DOI: 10.1016/j.jksus.2022.102254
    The medical image enhancement is major class in the image processing which aims for improving the medical diagnosis results. The improving of the quality of the captured medical images is considered as a challenging task in medical image. In this study, a trace operator in fractional calculus linked with the derivative of fractional Rényi entropy is proposed to enhance the low contrast COVID-19 images. The pixel probability values of the input image are obtained first in the proposed image enhancement model. Then the covariance matrix between the input image and the probability of a pixel intensity of the input image to be calculated. Finally, the image enhancement is performed by using the convolution of covariance matrix result with the input image. The proposed enhanced image algorithm is tested against three medical image datasets with different qualities. The experimental results show that the proposed medical image enhancement algorithm achieves the good image quality assessments using both the BRISQUE, and PIQE quality measures. Moreover, the experimental results indicated that the final enhancement of medical images using the proposed algorithm has outperformed other methods. Overall, the proposed algorithm has significantly improved the image which can be useful for medical diagnosis process.
  2. Al-Shamasneh AR, Jalab HA, Palaiahnakote S, Obaidellah UH, Ibrahim RW, El-Melegy MT
    Entropy (Basel), 2018 May 05;20(5).
    PMID: 33265434 DOI: 10.3390/e20050344
    Kidney image enhancement is challenging due to the unpredictable quality of MRI images, as well as the nature of kidney diseases. The focus of this work is on kidney images enhancement by proposing a new Local Fractional Entropy (LFE)-based model. The proposed model estimates the probability of pixels that represent edges based on the entropy of the neighboring pixels, which results in local fractional entropy. When there is a small change in the intensity values (indicating the presence of edge in the image), the local fractional entropy gives fine image details. Similarly, when no change in intensity values is present (indicating smooth texture), the LFE does not provide fine details, based on the fact that there is no edge information. Tests were conducted on a large dataset of different, poor-quality kidney images to show that the proposed model is useful and effective. A comparative study with the classical methods, coupled with the latest enhancement methods, shows that the proposed model outperforms the existing methods.
  3. Hasan AM, Jalab HA, Ibrahim RW, Meziane F, Al-Shamasneh AR, Obaiys SJ
    Entropy (Basel), 2020 Sep 15;22(9).
    PMID: 33286802 DOI: 10.3390/e22091033
    Brain tumor detection at early stages can increase the chances of the patient's recovery after treatment. In the last decade, we have noticed a substantial development in the medical imaging technologies, and they are now becoming an integral part in the diagnosis and treatment processes. In this study, we generalize the concept of entropy difference defined in terms of Marsaglia formula (usually used to describe two different figures, statues, etc.) by using the quantum calculus. Then we employ the result to extend the local binary patterns (LBP) to get the quantum entropy LBP (QELBP). The proposed study consists of two approaches of features extractions of MRI brain scans, namely, the QELBP and the deep learning DL features. The classification of MRI brain scan is improved by exploiting the excellent performance of the QELBP-DL feature extraction of the brain in MRI brain scans. The combining all of the extracted features increase the classification accuracy of long short-term memory network when using it as the brain tumor classifier. The maximum accuracy achieved for classifying a dataset comprising 154 MRI brain scan is 98.80%. The experimental results demonstrate that combining the extracted features improves the performance of MRI brain tumor classification.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links