Learning Analytics Tools (LATs) can be used for informed decision-making regarding teaching strategies and their continuous enhancement. Therefore, LATs must be adopted in higher learning institutions, but several factors hinder its implementation, primarily due to the lack of an implementation model. Therefore, in this study, the focus is directed towards examining LATs adoption in Higher Learning Institutions (HLIs), with emphasis on the determinants of the adoption process. The study mainly aims to design a model of LAT adoption and use it in the above context to improve the institutions' decision-making and accordingly, the study adopted an extended version of Technology Acceptance Model (TAM) as the underpinning theory. Five experts validated the employed survey instrument, and 500 questionnaire copies were distributed through e-mails, from which 275 copies were retrieved from Saudi employees working at public HLIs. Data gathered was exposed to Partial Least Square-Structural Equation Modeling (PLS-SEM) for analysis and to test the proposed conceptual model. Based on the findings, the perceived usefulness of LAT plays a significant role as a determinant of its adoption. Other variables include top management support, financial support, and the government's role in LATs acceptance and adoption among HLIs. The findings also supported the contribution of LAT adoption and acceptance towards making informed decisions and highlighted the need for big data facility and cloud computing ability towards LATs usefulness. The findings have significant implications towards LATs implementation success among HLIs, providing clear insights into the factors that can enhance its adoption and acceptance. They also lay the basis for future studies in the area to validate further the effect of LATs on decision-making among HLIs institutions. Furthermore, the obtained findings are expected to serve as practical implications for policy makers and educational leaders in their objective to implement LAT using a multi-layered method that considers other aspects in addition to the perceptions of the individual user.
The deaf-mutes population always feels helpless when they are not understood by others and vice versa. This is a big humanitarian problem and needs localised solution. To solve this problem, this study implements a convolutional neural network (CNN), convolutional-based attention module (CBAM) to recognise Malaysian Sign Language (MSL) from images. Two different experiments were conducted for MSL signs, using CBAM-2DResNet (2-Dimensional Residual Network) implementing "Within Blocks" and "Before Classifier" methods. Various metrics such as the accuracy, loss, precision, recall, F1-score, confusion matrix, and training time are recorded to evaluate the models' efficiency. The experimental results showed that CBAM-ResNet models achieved a good performance in MSL signs recognition tasks, with accuracy rates of over 90% through a little of variations. The CBAM-ResNet "Before Classifier" models are more efficient than "Within Blocks" CBAM-ResNet models. Thus, the best trained model of CBAM-2DResNet is chosen to develop a real-time sign recognition system for translating from sign language to text and from text to sign language in an easy way of communication between deaf-mutes and other people. All experiment results indicated that the "Before Classifier" of CBAMResNet models is more efficient in recognising MSL and it is worth for future research.