Displaying all 4 publications

Abstract:
Sort:
  1. Albadr MAA, Tiun S, Ayob M, Al-Dhief FT
    Cognit Comput, 2022 Oct 12.
    PMID: 36247809 DOI: 10.1007/s12559-022-10063-x
    COVID-19 (coronavirus disease 2019) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Recently, it has been demonstrated that the voice data of the respiratory system (i.e., speech, sneezing, coughing, and breathing) can be processed via machine learning (ML) algorithms to detect respiratory system diseases, including COVID-19. Consequently, many researchers have applied various ML algorithms to detect COVID-19 by using voice data from the respiratory system. However, most of the recent COVID-19 detection systems have worked on a limited dataset. In other words, the systems utilize cough and breath voices only and ignore the voices of the other respiratory system, such as speech and vowels. In addition, another issue that should be considered in COVID-19 detection systems is the classification accuracy of the algorithm. The particle swarm optimization-extreme learning machine (PSO-ELM) is an ML algorithm that can be considered an accurate and fast algorithm in the process of classification. Therefore, this study proposes a COVID-19 detection system by utilizing the PSO-ELM as a classifier and mel frequency cepstral coefficients (MFCCs) for feature extraction. In this study, respiratory system voice samples were taken from the Corona Hack Respiratory Sound Dataset (CHRSD). The proposed system involves thirteen different scenarios: breath deep, breath shallow, all breath, cough heavy, cough shallow, all cough, count fast, count normal, all count, vowel a, vowel e, vowel o, and all vowels. The experimental results demonstrated that the PSO-ELM was capable of attaining the highest accuracy, reaching 95.83%, 91.67%, 89.13%, 96.43%, 92.86%, 88.89%, 96.15%, 96.43%, 88.46%, 96.15%, 96.15%, 95.83%, and 82.89% for breath deep, breath shallow, all breath, cough heavy, cough shallow, all cough, count fast, count normal, all count, vowel a, vowel e, vowel o, and all vowel scenarios, respectively. The PSO-ELM is an efficient technique for the detection of COVID-19 utilizing voice data from the respiratory system.
  2. Albadr MAA, Tiun S, Al-Dhief FT, Sammour MAM
    PLoS One, 2018;13(4):e0194770.
    PMID: 29672546 DOI: 10.1371/journal.pone.0194770
    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.
  3. Albadr MAA, Ayob M, Tiun S, Al-Dhief FT, Arram A, Khalaf S
    Front Oncol, 2023;13:1150840.
    PMID: 37434975 DOI: 10.3389/fonc.2023.1150840
    The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient assessment metrics, or both. One of the most recent and effective ML algorithms, fast learning network (FLN), may be seen as a reputable and efficient approach for classifying data; however, it has not been applied to the problem of BC diagnosis. Therefore, this study proposes the FLN algorithm in order to improve the accuracy of the BC diagnosis. The FLN algorithm has the capability to a) eliminate overfitting, b) solve the issues of both binary and multiclass classification, and c) perform like a kernel-based support vector machine with a structure of the neural network. In this study, two BC databases (Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic Breast Cancer (WDBC)) were used to assess the performance of the FLN algorithm. The results of the experiment demonstrated the great performance of the suggested FLN method, which achieved an average of accuracy 98.37%, precision 95.94%, recall 99.40%, F-measure 97.64%, G-mean 97.65%, MCC 96.44%, and specificity 97.85% using the WBCD, as well as achieved an average of accuracy 96.88%, precision 94.84%, recall 96.81%, F-measure 95.80%, G-mean 95.81%, MCC 93.35%, and specificity 96.96% using the WDBC database. This suggests that the FLN algorithm is a reliable classifier for diagnosing BC and may be useful for resolving other application-related problems in the healthcare sector.
  4. Albadr MAA, Tiun S, Ayob M, Al-Dhief FT, Omar K, Hamzah FA
    PLoS One, 2020;15(12):e0242899.
    PMID: 33320858 DOI: 10.1371/journal.pone.0242899
    The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links