Precision temperature measurement of a nano system with high sensitivity and fast response is still a challenge. The marvelous thermal and mechanical properties of graphite will allow the creation of superior nanoscale temperature sensors. In-situ x-ray diffraction was employed to determine the graphite hexagonal crystal lattice dimensions and the coefficient of thermal expansion based on the calculation of its interatomic distance. The energy of graphite was mapped over the first Brillouin zone in the temperature range of 50 °C-1200 °C at intervals of 50 °C. Energy-based comparative studies between the quantum free electron approach obtained by an inelastic scattering and an harmonic oscillator are introduced by the principal quantum number associated with the excitation level. The hexagonal lattice constants, interlayer distance and interatomic distance of graphite crystals are investigated analytically with consideration given to their temperature dependence and the carbon peak (002), where the 2θ value decreases slightly with increasing temperature. The coefficient of thermal expansion of graphite-based interatomic distance is negative and tends toward zero with increasing temperature, which is in very good agreement with experiments. Moreover, the energy probability distributions enclosed by reciprocal lattice vectors of the hexagonal lattice are defined and interpreted based on lattice dimensions with varying temperature. Linear changes of the temperature-driven unit cell lattice dimensions and analysis of the kinetic energy of the electron in graphite may both be utilised for the advanced temperature interpretation model and preliminary design of a precise nanothermometer.
This paper introduces a new spark plasma sintering technique that is able to order crystalline anisotropy by in-series/in situ DC electric coupled magnetic field. The process control parameters have been investigated on the production of anisotropic BaFe12O19 magnets based on resulted remanence (Mr). Sintering holding time (H.T.), cooling rate (C.R.), pressure (P), and sintering temperature (S.T.) are optimized by Taguchi with L9 orthogonal array (OA). The remanent magnetization of nanocrystalline BaFe12O19 in parallel (Mrǁ) and perpendicular (MrꞱ) to the applied magnetic field was regarded as a measure of performance. The Taguchi study calculated optimum process parameters, which significantly improved the sintering process based on the confirmation tests of BaFe12O19 anisotropy. The magnetic properties in terms of Mrǁ and MrꞱ were greatly affected by sintering temperature and pressure according to ANOVA results. In addition, regression models were developed for predicting the Mrǁ as well as MrꞱ respectively.