Displaying all 4 publications

Abstract:
Sort:
  1. Srivastava P, Sahgal M, Sharma K, Enshasy HAE, Gafur A, Alfarraj S, et al.
    Front Plant Sci, 2022;13:984522.
    PMID: 36438130 DOI: 10.3389/fpls.2022.984522
    Siderophore-positive bacteria present in the rhizosphere and in bulk soil assist plants by either inhibiting phytopathogen proliferation or increasing plant growth. The bacterial diversity of the Shisham forest ecosystem in the Tarai region of the Western Himalayas was studied and used for siderophore production, taking into account the large-scale dieback and wilt-induced mortality in Dalbergia sissoo (common name: shisham) plantation forests and the importance of soil microbes in tree health. In addition, Pseudomonas, Burkholderia, and Streptomyces were prominent siderophore-positive bacteria in Shisham forests. Pseudomonas species are known for their remarkable siderophore-producing ability. Bacterial siderophores inhibit pathogen growth by rapidly lowering the number of ferric ions in the rhizosphere. The Pseudomonas monteilii strain MN759447 was isolated from a D. sissoo plantation forest at the Agroforestry Research Centre, Pantnagar, Uttarakhand (28°58'N 79°25'E/28.97°N 79.41°E). It produces a significant number of siderophore units (80.36% in total). A two-stage optimization of growth factors was attempted in the strain MN759447 for better siderophore recovery. In the first-stage single-factor experiment, among the five variables studied, only pH, NH4NO3 concentration, and Fe concentration affected siderophore synthesis. In the second stage, an optimization of pH, NH4NO3 concentration, and Fe concentration for improved growth and enhanced siderophore production was carried out using a Box-Behnken design with response surface methodology. By using LC-MS, two derivatives of pseudomonine, salicylic acid, and kynurenic acid were detected as siderophores in the purified XAD-2 methanol extract of the P. monteilii strain MN759447. In addition to siderophore production, the P. monteilii strain MN759447 also exhibited a broad range of antagonistic activity against Aspergillus calidoustus (65%), Fusarium oxysporum (41.66%), Talaromyces pinophilus (65%), and Talaromyces verruculosus (65.1%) that are linked to sissoo mortality. To our knowledge, this is the first report on siderophore-producing bacteria isolated, identified, and characterized from the D. sissoo Roxb. forest habitat. This strain can also be developed as a commercial product.
  2. Raja T, Mohanavel V, Sathish T, Djearamane S, Velmurugan P, Karthick A, et al.
    Polymers (Basel), 2021 Nov 09;13(22).
    PMID: 34833158 DOI: 10.3390/polym13223859
    Awareness of environmental concerns influences researchers to develop an alternative method of developing natural fiber composite materials, to reduce the consumption of synthetic fibers. This research attempted testing the neem (Azadirachta indica) fiber and the banyan (Ficus benghalensis) fiber at different weight fractions, under flame retardant and thermal testing, in the interest of manufacturing efficient products and parts in real-time applications. The hybrid composite consists of 25% fiber reinforcement, 70% matrix material, and 5% bran filler. Their thermal properties-short-term heat deflection, temperature, thermal conductivity, and thermal expansion-were used to quantify the effect of potential epoxy composites. Although natural composite materials are widely utilized, their uses are limited since many of them are combustible. As a result, there has been a lot of focus on making them flame resistant. The thermal analysis revealed the sample B was given 26% more short-term heat resistance when the presence of banyan fiber loading is maximum. The maximum heat deflection temperature occurred in sample A (104.5 °C) and sample B (99.2 °C), which shows a 36% greater thermal expansion compared with chopped neem fiber loading. In sample F, an increased chopped neem fiber weight fraction gave a 40% higher thermal conductivity, when compared to increasing the bidirectional banyan mat of this hybrid composite. The maximum flame retardant capacity occurred in samples A and B, with endurance up to 12.9 and 11.8 min during the flame test of the hybrid composites.
  3. Kadiri M, Sevugapperumal N, Nallusamy S, Ragunathan J, Ganesan MV, Alfarraj S, et al.
    Microbiol Res, 2023 Mar;268:127277.
    PMID: 36577205 DOI: 10.1016/j.micres.2022.127277
    Management of late blight of potato incited by Phytophthora infestans remains a major challenge. Coevolution of pathogen with resistant strains and the rise of fungicide resistance have made it more challenging to prevent the spread of P. infestans. Here, the anti-oomycete potential of Bacillus velezensis VB7 against P. infestans through pan-genome analysis and molecular docking were explored. The Biocontrol potential of VB7 against P. infestans was assessed using a confrontational assay. The biomolecules from the inhibition zone were identified and subjected to in silico analysis against P. infestans target proteins. Nucleotide sequences for 54 B. velezensis strains from different geographical locations were used for pan-genome analysis. The confrontational assay revealed the anti-oomycetes potential of VB7 against P. infestans. Molecular docking confirmed that the penicillamine disulfide had the maximum binding energy with eight effector proteins of P. infestans. Besides, scanning electron microscopic observations of P. infestans interaction with VB7 revealed structural changes in hypha and sporangia. Pan-genome analysis between 54 strains of B. velezensis confirmed that the core genome had 2226 genes, and it has an open pan-genome. The present study confirmed the anti-oomycete potential of B. velezensis VB7 against P. infestans and paved the way to explore the genetic potential of VB7.
  4. Rastgou M, Rezaee Danesh Y, Ercisli S, Sayyed RZ, El Enshasy HA, Dailin DJ, et al.
    Plants (Basel), 2022 Apr 25;11(9).
    PMID: 35567156 DOI: 10.3390/plants11091155
    The bacterial soft rot and vascular wilt of sugar beet are the major diseases of sugar crops globally induced by Pectobacterium betavasculorum and P. carotovorum subsp. carotovorum (Pcc). The control of this bacterial disease is a severe problem, and only a few copper-based chemical bactericides are available for this disease. Because of the limitations of chemicals to control plant bacterial pathogens, the essential oils and extracts have been considered one of the best alternative strategies for their control. In this study, twenty-seven essential oils and twenty-nine plant extracts were extracted and evaluated for their antibacterial activities against Pectobacterium betavasculorum isolate C3, using the agar diffusion method at 0.01%, 0.1%, and 100% (v/v). Pure Pimpinella anisum L. oil exhibited the most anti-bacterial activity among three different concentrations of essential oils and extracts, followed by Thymus vulgaris L. oil and Rosa multiflora Thunb. extract. The efficacy of effective essential oils and extracts on Ic1 cultivar of sugar beet seeds germination and seedling growth in vivo also were tested. The seed germination of the Ic1 cultivar was inhibited at all the concentrations of essential oils used. Only extracts of Rosa multiflora Thunb., Brassica oleracea L., Lactuca serriola L., Salvia rosmarinus Spenn., Syzygium aromaticum (L.) Merr. and L.M.Perry, Eucalyptus globulus Labill., and essential oils of Ocmium basilicum L., Pimpinella anisum L., and Mentha× piperita L.L. in 0.1% concentration had no inhibition on seed germination and could improve seedling growth. This is the first report of the antibacterial activity of essential oils and extracts on Pectobacterium betavasculorum.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links